日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
用數學歸納法證明,若f(n)=1+++…+,則n+f(1)+f(2)+…+f(n-1)=n·f(n)(n≥2,且n∈N+).

思路解析:(1)當n=2時,左邊=2+f(1)=2+1=3,

右邊=2·f(2)=2×(1+)=3,左邊=右邊,等式成立.

(2)假設n=k時等式成立,即

k+f(1)+f(2)+…+f(k-1)=kf(k).

由已知條件可得f(k+1)=f(k)+,

右邊=(k+1)·f(k+1)(先寫出右邊,便于左邊對照變形).

當n=k+1時,左邊=(k+1)+f(1)+f(2)+…+f(k-1)+f(k)

=[k+f(1)+f(2)+…+f(k-1)]+1+f(k)(湊成歸納假設)

=kf(k)+1+f(k)(利用假設)

=(k+1)·f(k)+1

=(k+1)·[f(k+1)-]+1

=(k+1)·f(k+1)=右邊.

∴當n=k+1時,等式也成立.

由(1)(2)可知,對一切n≥2的正整數等式都成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某學生在觀察正整數的前n項平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*時發現它的和為關于n的三次函數,于是他猜想:是否存在常數a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.對于一切n∈N*都立?
(1)若n=1,2 時猜想成立,求實數a,b的值.
(2)若該同學的猜想成立,請你用數學歸納法證明.若不成立,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•奉賢區一模)首項為正數的數列{an}滿足an+1=
an2+34
,(n∈N*)

(1)當{an}是常數列時,求a1的值;
(2)用數學歸納法證明:若a1為奇數,則對一切n≥2,an都是奇數;
(3)若對一切n∈N*,都有an+1>an,求a1的取值范圍;
(4)以上(1)(2)(3)三個問題是從數列{an}的某一個角度去進行研究的,請你類似地提出一個與數列{an}相關的數學真命題,并加以推理論證.

查看答案和解析>>

科目:高中數學 來源: 題型:

用數學歸納法證明,若f(n)=1+++…+,則n+f(1)+f(2)+…+f(n-1)=n·f(n)(n≥2,且n∈N+).

查看答案和解析>>

科目:高中數學 來源: 題型:

用數學歸納法證明,若fn)=1+++…+,則n+f(1)+f(2)+…+fn-1)=nfn)(n≥2且nN*).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久精品一区二区 | 爱福利视频网 | 999毛片| 一区二区不卡 | 欧美一区在线视频 | 这里只有精品在线观看 | 国产蜜臀av | 天天澡天天狠天天天做 | 精品一区在线播放 | 欧美国产精品一区二区 | 国产欧美精品一区二区三区 | 国产区免费 | 国产欧美日本 | 超碰在线观看免费 | 日韩av成人在线 | 亚洲欧美日韩一区 | 四虎地址| 成人欧美一区二区三区白人 | 91网站免费观看 | 一区二区三区四区在线视频 | 国产福利视频 | 欧美性猛交xxxx黑人交 | 国产aa视频 | 日本黄色录像 | 免费三级网站 | 一区二区精品在线 | 亚洲色综合 | 亚洲视频在线视频 | 午夜国产在线观看 | 国产精品久久久久久久久久久久午夜片 | 福利在线 | 中文字幕日本在线 | 国产精品久久久久久久久免费桃花 | 麻豆视频国产 | 黄色录像一级片 | 日韩一区二区三区在线 | 亚洲永久免费 | 国产一区在线视频 | 亚洲男人天堂av | 国产午夜一区二区三区 | 欧美一级做性受免费大片免费 |