【題目】已知、
是異面直線,給出下列結論:
①一定存在平面,使直線
平面
,直線
平面
;
②一定存在平面,使直線
平面
,直線
平面
;
③一定存在無數個平面,使直線
與平面
交于一個定點,且直線
平面
.
則所有正確結論的序號為( )
A.①②B.②C.②③D.③
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人獨立地對某一技術難題進行攻關。甲能攻克的概率為,乙能攻克的概率為
,丙能攻克的概率為
.
(1)求這一技術難題被攻克的概率;
(2)若該技術難題末被攻克,上級不做任何獎勵;若該技術難題被攻克,上級會獎勵萬元。獎勵規則如下:若只有1人攻克,則此人獲得全部獎金
萬元;若只有2人攻克,則獎金獎給此二人,每人各得
萬元;若三人均攻克,則獎金獎給此三人,每人各得
萬元。設甲得到的獎金數為X,求X的分布列和數學期望。(本題滿分12分)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某糕點房推出一類新品蛋糕,該蛋糕的成本價為4元,售價為8元.受保質期的影響,當天沒有銷售完的部分只能銷毀.經過長期的調研,統計了一下該新品的日需求量.現將近期一個月(30天)的需求量展示如下:
日需求量x(個) | 20 | 30 | 40 | 50 |
天數 | 5 | 10 | 10 | 5 |
(1)從這30天中任取兩天,求兩天的日需求量均為40個的概率.
(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量
的期望.
(3)根據(2)中的分布列求得當該糕點房一天制作35個該類蛋糕時,對應的利潤的期望值為;現有員工建議擴大生產一天45個,求利用利潤的期望值判斷此建議該不該被采納.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環.據此,某網站退出了關于生態文明建設進展情況的調查,調查數據表明,環境治理和保護問題仍是百姓最為關心的熱點,參與調查者中關注此問題的約占.現從參與關注生態文明建設的人群中隨機選出200人,并將這200人按年齡分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(I)求出的值;
(II)求出這200人年齡的樣本平均數(同一組數據用該區間的中點值作代表)和中位數(精確到小數點后一位);
(III)現在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調查,求第2組恰好抽到2人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則
的取值范圍為( 。
A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩位同學參加數學應用知識競賽培訓,現分別從他們在培訓期間參加的若干次測試成績中隨機抽取8次,記錄如下:
(Ⅰ)分別估計甲、乙兩名同學在培訓期間所有測試成績的平均分;
(Ⅱ)從上圖中甲、乙兩名同學高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;
(Ⅲ)現要從甲、乙中選派一人參加正式比賽,根據所抽取的兩組數據分析,你認為選派哪位同學參加較為合適?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)若是定義在區間
上的“局部奇函數”,求實數
的取值范圍;
(3)若為定義域
上的“局部奇函數”,求實數
的取值范圍;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com