日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
函數f(x)=(x-1)2x
45
的極小值是
0
0
分析:求導函數,確定函數的單調性,即可求得函數的極小值.
解答:解:由于f(x)=(x-1)2x 
4
5
,則f′(x)=2(x-1)•x 
4
5
+(x-1)2
4
5
x -
1
5

=
1
5
x -
1
5
(5x•2(x-1)+4(x-1)2)
=
1
5
x -
1
5
(14x2-18x+4)

f (x)=0可得x=1或x=
2
7

f (x)>0,可得x>1或x<
2
7
,令f (x)<0,可得
2
7
<x<1

∴函數在x=1時,函數取得極小值,極小值是0.
故答案為:0
點評:本題考查導數知識的運用,考查函數的單調性與極值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義域為R的函數f(x)滿足條件:
[f(x1)-f(x2)](x1-x2)>0,(x1x2R+x1x2)
②f(x)+f(-x)=0(x∈R); 
③f(-3)=0.
則不等式x•f(x)<0的解集是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-2x2-4x-7.
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)求a>2時,證明:對于任意的x>2且x≠a,恒有f(x)>f(a)+f'(a)(x-a);
(Ⅲ)設x0是函數y=f(x)的零點,實數α滿足f(α)>0,β=α-
f(α)f′(α)
,試探究實數α、β、x0的大小關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的振幅為
2
,周期為π,且圖象關于直線x=
π
8
對稱.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將函數y=sinx的圖象作怎樣的變換可以得到f(x)的圖象?

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: a在线播放| 久久久亚洲精品视频 | 自拍偷拍欧美日韩 | 91精品在线播放 | 999av| 欧美一级片免费看 | 8090理论片午夜理伦片 | 欧美黄色片视频 | 国产视频a | 午夜影院黄 | 国产精品99精品久久免费 | 亚洲免费视频一区 | 4虎最新网址 | 成年人免费视频网站 | 成人深夜福利视频 | 日韩综合久久 | 国产日韩欧美一区 | 成人免费在线视频观看 | 久久久少妇 | 亚洲黄色在线视频 | 日韩欧美亚洲国产 | 亚洲国产黄色 | 成年人国产 | 一区二区国产精品 | 福利网站在线观看 | 日韩在线免费视频 | 国产三级黄色 | 久久在线 | 日韩不卡av | 午夜激情视频 | 欧美亚洲三级 | 手机av在线播放 | 色呦呦国产精品 | 一级片在线播放 | 日韩黄色一级 | 精品国产乱码久久久久 | 青青伊人网 | 欧美亚洲 | 日韩欧美大片 | 天天色天天爱 | 香蕉视频免费 |