【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為 ,求
的值.
【答案】證明:(Ⅰ)連結BD交AC于點O,連結OM.
因為 AB∥CD,AB=2CD,所以 .
因為 BM=2MP,所以 .所以
.
所以OM∥PD.
因為 OM平面MAC,PD平面MAC,
所以 PD∥平面MAC.
(Ⅱ)因為 平面PAD⊥平面ABCD,AD⊥AB,
平面PAD∩平面ABCD=AD,AB平面ABCD,
所以AB⊥平面PAD.
因為PA平面PAD,所以AB⊥PA.
同理可證:AD⊥PA.
因為 AD平面ABCD,AB平面ABCD,AD∩AB=A,
所以PA⊥平面ABCD.
解:(Ⅲ)分別以邊AD,AB,AP所在直線為x,y,z軸,
建立如圖所示的空間直角坐標系.
由AB=AD=AP=2CD=2,
得A(0,0,0),B(0,2,0),C(2,1,0),D(2,0,0),P(0,0,2),
則 ,
.
由(Ⅱ)得:PA⊥平面ABCD.
所以 平面ABCD的一個法向量為 .
設 (0≤λ≤1),即
.所以
.
設平面AMC的法向量為 ,
則 ,即
令x=λ﹣1,則y=2﹣2λ,z=﹣2λ.所以 .
因為 二面角B﹣AC﹣M的余弦值為 ,
所以 ,解得
.
所以 的值為
.
【解析】(Ⅰ)連結BD交AC于點O,連結OM,推導出OM∥PD,由此能證明PD∥平面MAC.(Ⅱ)推導出AB⊥PA,AD⊥PA,由此能證明PA⊥平面ABCD.(Ⅲ)分別以邊AD,AB,AP所在直線為x,y,z軸,建立空間直角坐標系,利用向量法能求出 的值.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對平面與平面垂直的判定的理解,了解一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數學 來源: 題型:
【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.
(1)求 的值;
(2)設AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
在直角坐標系中,直線
過點
,傾斜角為
. 以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
交于
兩點.
(1)求直線的參數方程(設參數為
)和曲線
的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,若關于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8個不同的實數根,則b+c的取值范圍為( )
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e=
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點A,B,與圓x2+y2= 相切于點M.
(i)證明:OA⊥OB(O為坐標原點);
(ii)設λ= ,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的圓,點C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點E.若EB=6,EC=6 ,則BC的長為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com