【題目】教材上一例問題如下:
一只紅鈴蟲的產卵數y和溫度x有關,現收集了7組觀測數據如下表,試建立y與x之間的回歸方程.
溫度 x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
產卵數y/個 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
某同學利用圖形計算器研究它時,先作出散點圖(如圖所示),發現兩個變量不呈線性相關關系. 根據已有的函數知識,發現樣本點分布在某一條指數型曲線的附近(
和
是待定的參數),于是進行了如下的計算:
根據以上計算結果,可以得到紅鈴蟲的產卵數y對溫度x的回歸方程為__________.(精確到0.0001) (提示:利用代換可轉化為線性關系)
科目:高中數學 來源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數據(單位:kPa)的分組區間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組.如圖是根據試驗數據制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數為( )
A.6
B.8
C.12
D.18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三名大學生參加學校組織的“國學達人”挑戰賽, 每人均有兩輪答題機會,當且僅當第一輪不過關時進行第二輪答題.根據平時經驗,甲、乙、丙三名大學生每輪過關的概率分別為,且三名大學生每輪過關與否互不影響.
(1)求甲、乙、丙三名大學生都不過關的概率;
(2)記為甲、乙、丙三名大學生中過關的人數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某網站從春節期間參與收發網絡紅包的手機用戶中隨機抽取名進行調查,將受訪用戶按年齡分成
組:
,
,…,
,并整理得到如下頻率分布直方圖:
(Ⅰ)求的值;
(Ⅱ)從春節期間參與收發網絡紅包的手機用戶中隨機抽取一人,估計其年齡低于歲的概率;
(Ⅲ)估計春節期間參與收發網絡紅包的手機用戶的平均年齡.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人研究中學生的性別與成績、視力、智商、閱讀量這4個變量的關系,隨機抽查了52名中學生,得到統計數據如表1至表4,則與性別有關聯的可能性最大的變量是( )
表1
成績 | 不及格 | 及格 | 總計 |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
總計 | 16 | 36 | 52 |
表2
視力 | 好 | 差 | 總計 |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
總計 | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 總計 |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
總計 | 16 | 36 | 52 |
表4
閱讀量 | 豐富 | 不豐富 | 總計 |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
總計 | 16 | 36 | 52 |
A.成績
B.視力
C.智商
D.閱讀量
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
(1)求證:AB⊥PD;
(2)若∠BPC=90°,PB= ,PC=2,問AB為何值時,四棱錐P﹣ABCD的體積最大?并求此時平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f0(x)= (x>0),設fn(x)為fn﹣1(x)的導數,n∈N* .
(1)求2f1( )+
f2(
)的值;
(2)證明:對任意n∈N* , 等式|nfn﹣1( )+
fn(
)|=
都成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數關系:
f(t)=10﹣ ,t∈[0,24)
(1)求實驗室這一天的最大溫差;
(2)若要求實驗室溫度不高于11℃,則在哪段時間實驗室需要降溫?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com