【題目】已知函數
(1)當時,求不等式
的解集;
(2)若,且對任意
,
恒成立,求
的最小值.
科目:高中數學 來源: 題型:
【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、B、C、A1、、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有 種(用數字作答).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面五邊形ABCDE中,AB∥CE,且AE=2,∠AEC=60°,CD=ED=,cos∠EDC=
.將△CDE沿CE折起,使點D移動到P的位置,且AP=
,得到四棱錐P-ABCE.
(1)求證:AP⊥平面ABCE;
(2)記平面PAB與平面PCE相交于直線l,求證:AB∥l.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有一款智能學習APP,學習內容包含文章學習和視頻學習兩類,且這兩類學習互不影響.已知該APP積分規則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計3分鐘積2分,每日上限積6分.經過抽樣統計發現,文章學習積分的概率分布表如表1所示,視頻學習積分的概率分布表如表2所示.
(1)現隨機抽取1人了解學習情況,求其每日學習積分不低于9分的概率;
(2)現隨機抽取3人了解學習情況,設積分不低于9分的人數為,求
的概率分布及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】揚州大學數學系有6名大學生要去甲、乙兩所中學實習,每名大學生都被隨機分配到兩所中學的其中一所.
(1)求6名大學生中至少有1名被分配到甲學校實習的概率;
(2)設,
分別表示分配到甲、乙兩所中學的大學生人數,記
,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:x+y-6=0,過直線上一點P作圓x2+y2=4的切線,切點分別為A,B,則四邊形PAOB面積的最小值為______,此時四邊形PAOB外接圓的方程為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“綠水青山就是金山銀山”,“建設美麗中國”已成為新時代中國特色社會主義生態文明建設的重要內容,某班在一次研學旅行活動中,為了解某苗圃基地的柏樹幼苗生長情況,在這些樹苗中隨機抽取了120株測量高度(單位:),經統計,樹苗的高度均在區間
內,將其按
,
,
,
,
,
分成6組,制成如圖所示的頻率分布直方圖.據當地柏樹苗生長規律,高度不低于
的為優質樹苗.
(1)求圖中的值;
(2)已知所抽取的這120株樹苗來自于,
兩個試驗區,部分數據如列聯表:
|
| 合計 | |
優質樹苗 | 20 | ||
非優質樹苗 | 60 | ||
合計 |
將列聯表補充完整,并判斷是否有99.9%的把握認為優質樹苗與,
兩個試驗區有關系,并說明理由;
(3)用樣本估計總體,若從這批樹苗中隨機抽取4株,其中優質樹苗的株數為,求
的分布列和數學期望
.
附:參考公式與參考數據:,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,過點
作
交
于點
,以
為折痕把
折起,當幾何體
的的體積最大時,則下列命題中正確的個數是( )
①
②∥平面
③與平面
所成的角等于
與平面
所成的角
④與
所成的角等于
與
所成的角
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三個校區分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區鋪設三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.
(1)將y表示成θ的函數,并寫出θ的范圍;
(2)請確定工作坑P的位置,使地下電纜管線的總長度最小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com