日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=a(lnx-x)(a∈R).
(I)討論函數f(x)的單調性;
(II)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,函數g(x)=x3+x2[
m2
+f′(x)]
在區間(2,3)上總存在極值,求實數m的取值范圍.
分析:(I)利用導數研究函數的單調性,首先求出極值點,同時注意函數的定義域;
(II)已知函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,根據導數與直線斜率的關系可得f′(2)=1,將問題轉化為二元一次方程有解問題,從而求解;
解答:解:(I)易知f(x)的定義域為(0,+∞),f′(x)=
a(1-x)
x

當a<0時,令f′(x)=
a(1-x)
x
>0,即
1-x
x
<0,解得增區間為(1,+∞),
減區間為(0,1);
當a>0時,令f′(x)=
a(1-x)
x
>0,即
1-x
x
>0,解得增區間為(0,1),減區間為(1,+∞),
當a=0時,f(x)不是單調函數;
(II)∵函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,
∴f′(2)=
a(1-2)
2
=tan45°=1,
∴a=-2,
f′(x)=
-2(1-x)
x
=
2(x-1)
x

g(x)=x3+x2
m
2
+
2(x-1)
x
)=x3+(
m
2
+2)x2-2x,
g′(x)=3x2+(m+4)x-2,
∵g′(0)=-2<0,要使函數g(x)=x3+x2[
m
2
+f′(x)]在區間(2,3)上總存在極值,
只需
g′(2)<0
g′(3)>0

解得-
37
3
<m<-9;
點評:此題利用導數研究函數單調區間,以及導數所表示的幾何意義,將問題轉化為方程有解問題,是一道中檔題;
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费一区二区三区视频在线 | 色噜噜噜 | 亚洲欧美综合精品久久成人 | 亚洲午夜精品a | 夜夜爽99久久国产综合精品女不卡 | 美女91| 日韩成人高清 | 羞羞色视频 | 国产精品毛片一区视频播 | 国产一极片 | 最新版天堂资源中文在线 | 久久久久久成人 | 欧美日韩综合精品 | 亚洲乱码一区二区三区在线观看 | 中国一级免费毛片 | 欧美亚洲国产一区 | 成人精品一区二区 | 欧美区日韩区 | 91天堂| 久久男人天堂 | 麻豆久久久 | 国产特黄 | 国产精品无码久久综合网 | 日韩成年视频 | 国产亚洲成av人片在线观看桃 | 国产ts视频| 亚洲高清av | 国产精品久久久久无码av | av 一区二区三区 | 国产成在线观看免费视频 | 亚洲最新视频在线观看 | 国产在线观看一区二区三区 | 免费一区二区三区视频在线 | 国产99久久精品 | 亚洲综合福利视频 | 欧美精品一区二区三区一线天视频 | 国产午夜精品一区二区三区嫩草 | 成人精品视频99在线观看免费 | 中文字幕在线视频免费播放 | 亚洲aⅴ天堂av在线电影软件 | 欧美a网|