【題目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈R,使得f(x2)≤g(x1)成立,則實數a的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】已知點為圓
的圓心,
是圓上動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
(1)當在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,與(1)中所求點
的軌跡教育不同的兩點
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“
類函數”.
(1)已知函數,試判斷
是否為“
類函數”?并說明理由;
(2)設是定義在
上的“
類函數”,求是實數
的最小值;
(3)若
為其定義域上的“
類函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線C:y2=2x的準線方程是 , 經過點P(4,1)的直線l與拋物線C相交于A,B兩點,且點P恰為AB的中點,F為拋物線的焦點,則 = .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0),直線y=x+
與以原點為圓心,以橢圓C的短半軸為半徑的圓相切,F1 , F2為其左右焦點,P為橢圓C上的任意一點,△F1PF2的重心為G,內心為I,且IG∥F1F2 .
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點,直線∫過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1 , k2滿足k1+
k2=﹣ ,求直線MN的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知M為△ABC的中線AD的中點,過點M的直線分別交兩邊AB、AC于點P、Q,設 =x
,
,記y=f(x).
(1)求函數y=f(x)的表達式;
(2)設g(x)=x3+3a2x+2a,x∈[0,1].若對任意x1∈[ ,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據氣象部門預報,在距離碼頭A南偏東45°方向400千米B處的臺風中心正以20千米每小時的速度向北偏東15°方向沿直線移動,以臺風中心為圓心,距臺風中心100 千米以內的地區都將受到臺風影響.據以上預報估計,從現在起多長時間后,碼頭A將受到臺風的影響?影響時間大約有多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}是公比大于1的等比數列,Sn為數列{an}的前n項和,已知S3=7,且a1+3,3a2 , a3+4構成等差數列.
(1)求數列{an}的通項公式;
(2)求數列{an+log2an}(n∈N*)的前10項和T10 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com