日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
定義:若各項為正實數的數列{an}滿足an+1=
an
(n∈N*)
,則稱數列{an}為“算術平方根遞推數列”.已知數列{xn}滿足xn>0,n∈N*,且x1=
9
2
,點(xn+1,xn)在二次函數f(x)=2x2+2x的圖象上.
(1)試判斷數列{2xn+1}(n∈N*)是否為算術平方根遞推數列?若是,請說明你的理由;
(2)記yn=lg(2xn+1)(n∈N*),求證:數列{yn}是等比數列,并求出通項公式yn;
(3)從數列{yn}中依據某種順序自左至右取出其中的項yn1,yn2,yn3,…,把這些項重新組成一個新數列{zn}:z1=yn1,z2=yn2,z3=yn3,….
(理科)若數列{zn}是首項為z1=(
1
2
)m-1
、公比為q=
1
2k
(m,k∈N*)
的無窮等比數列,且數列{zn}各項的和為
16
63
,求正整數k、m的值.
(文科) 若數列{zn}是首項為z1=(
1
2
)m-1
,公比為q=
1
2k
(m,k∈N*)
的無窮等比數列,且數列{zn}各項的和為
1
3
,求正整數k、m的值.
考點:等比數列的性質,二次函數的性質
專題:綜合題,等差數列與等比數列
分析:(1)數列{2xn+1}(n∈N*)是否為算術平方根遞推數列,利用點(xn+1,xn)在二次函數f(x)=2x2+2x的圖象上,可得xn=2xn+12+2xn+1,即可證明2xn+1+1=
2xn+1
,從而數列{2xn+1}(n∈N*)是否為算術平方根遞推數列;
(2)由yn=lg(2xn+1),2xn+1+1=
2xn+1
,可得yn+1=
1
2
yn,即可證明∴數列{yn}是首項為1,公比為
1
2
等比數列,從而求出通項公式yn;
(3)理:由題意可得數列{zn}的首項為
1
2m-1
,公比為
1
2k
,可得
16
2k
+
63
2m-1
=16,再分類討論,可得正整數k、m的值;
文:由題意可得數列{zn}的首項為
1
2m-1
,公比為
1
2k
,可得
1
2k
+
3
2m-1
=1,再分類討論,可得正整數k、m的值.
解答: 解:(1)數列{2xn+1}(n∈N*)是否為算術平方根遞推數列,證明如下:
∵點(xn+1,xn)在二次函數f(x)=2x2+2x的圖象上,
∴xn=2xn+12+2xn+1
∴2xn+1=(2xn+1+1)2,
∵xn>0,n∈N*,
∴2xn+1+1=
2xn+1
,
∴數列{2xn+1}(n∈N*)是否為算術平方根遞推數列;
(2)∵yn=lg(2xn+1),2xn+1+1=
2xn+1
,
∴yn+1=
1
2
yn,
∵y1=lg(2x1+1)=1,
∴數列{yn}是首項為1,公比為
1
2
等比數列,
∴通項公式yn=(
1
2
)n-1

(3)理:由題意可得數列{zn}的首項為
1
2m-1
,公比為
1
2k
,
1
2m-1
1-
1
2k
=
16
63
,
16
2k
+
63
2m-1
=16,
若m-1≥3,則
16
2k
+
63
2m-1
16
2k
+
63
8
16
2
+
63
8
<16,矛盾,
∴m-1≤2,
∵m-1=0或1時,
16
2k
+
63
2m-1
>16,
∴m-1=2,
∴m=3,
∴k=6;
(文):由題意可得數列{zn}的首項為
1
2m-1
,公比為
1
2k
,
1
2m-1
1-
1
2k
=
1
3

1
2k
+
3
2m-1
=1,
若m-1≥3,則
1
2k
+
3
2m-1
1
2k
+
3
8
1
2
+
3
8
<1,矛盾,
∴m-1≤2,
∵m-1=0或1時,
1
2k
+
3
2m-1
>1,
∴m-1=2,
∴m=3,
∴k=2.
點評:本題考查新定義,考查等比數列的性質,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ax+
b
x
(其中a、b為常數)的圖象經過(1,2)、(2,
5
2
)
兩點.
(1)判斷并證明函數f(x)的奇偶性;
(2)證明:函數f(x)在區間[1,+∞)上單調遞增.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>b,a≠0,b≠0,c∈R,c≠0則下列不等式成立的是( 。
A、a+c>b+c
B、ac>bc
C、
1
a
1
b
D、a2>b2

查看答案和解析>>

科目:高中數學 來源: 題型:

一個幾何體的三視圖如圖所示,該幾何體的體積是( 。
A、16π
B、16
C、
16
3
D、
16π
3

查看答案和解析>>

科目:高中數學 來源: 題型:

某用人單位從甲、乙、丙、丁4名應聘者中招聘2人,若每名   應聘者被錄用的機會均等,則甲、乙2人中至少有1入被錄用   的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

將下列演繹推理寫成三段論的形式
(1)函數f(x)=x3是奇函數;
(2)菱形的對角線互相平分.

查看答案和解析>>

科目:高中數學 來源: 題型:

若C
 
3
n
=C
 
7
n
,(n∈N*),則C
 
2
n
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于平面向量
a
=(x1,y1),
b
=(x2,y2),若記<
a
,
b
>為它們的夾角,則cos<
a
,
b
>=
x1x2+y1y2
x12+y12
x22+y22
,把此結論類比到空間,對于空間向量
a
=(x1,y1,z1),
b
=(x2,y2,z2),若記<
a
b
>為它們的夾角,則cos<
a
,
b
>=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

a
=(1,2),
b
=(x,1),
m
=
a
+2
b
n
=2
a
-
b
,且
m
n
,則x=( 。
A、2
B、
7
2
C、-2或
7
2
D、
1
2
或-
7
2

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费黄色一级视频 | 日韩香蕉视频 | 欧美福利一区二区 | 日韩综合久久 | 日韩高清一区二区 | 长河落日| 亚洲狠狠干 | 一道本在线观看 | 美女天天干 | 欧美顶级黄色大片免费 | 国产麻豆91 | 久久艹精品 | 九九香蕉视频 | 亚洲欧美另类图片 | 国产一区二区中文字幕 | 亚洲国产精 | 国产第三页| 伊人黄色 | 福利视频免费观看 | 在线观看h片| 97人人看| 国产免费黄色 | 成人激情综合网 | 中文字幕高清在线 | 免费在线观看毛片 | 看免费毛片| 亚洲一区网站 | 欧美久久久久久久久 | 欧美色影院 | 天天干天天草 | 久久青青操| 成人黄性视频 | 日韩伦理一区二区 | 91三级视频 | 亚洲欧美综合另类 | 日韩高清在线播放 | 国产综合在线视频 | 视频一区二区三区在线观看 | 日韩欧美小视频 | 成人精品免费视频 | 免费在线小视频 |