日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

函數f(x)=,x∈[2,4]的最小值是

A.3           B.4           C.5           D.6

 

【答案】

A

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

探究函數f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數f(x)=x+
4
x
(x>0)
在區間(0,2)上遞減,函數f(x)=x+
4
x
(x>0)
在區間
 
上遞增;
(2)函數f(x)=x+
4
x
(x>0)
,當x=
 
時,y最小=
 

(3)函數f(x)=x+
4
x
(x<0)
時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天天看天天做 | 久久久久综合 | 日韩精品亚洲专区在线观看 | 日韩久久久久久久久久 | 久久久久一区二区三区 | 日韩伦理一区二区三区 | 午夜精品久久久久久久星辰影院 | 99视频免费观看 | 国外成人在线视频网站 | 日韩国产综合 | 国产欧美精品一区aⅴ影院 日韩精品区 | 黄色在线资源 | 精品无人乱码一区二区三区 | 在线无码| 九九亚洲精品 | 日韩欧美国产一区二区三区 | 在线视频 欧美日韩 | 多p视频| 你懂的在线网址 | 91国内视频在线观看 | 成人欧美一区二区三区在线观看 | 中文字幕亚洲欧美日韩在线不卡 | 在线亚洲激情 | 在线视频一二区 | 黄色免费一级 | 日韩在线播放一区 | 国产精品久久国产精品 | 清纯唯美亚洲综合 | 国产成人久久 | 日本黄色电影网址 | 一区二区在线免费观看 | 亚洲精品国产区 | 99re视频| 国产精品成人在线 | 天天操天天干天天做 | 日韩精品一区二区三区 | 免费福利在线 | 欧美不卡一区二区 | 射久久 | 精品一区二区电影 | 久久人人爽人人爽 |