【題目】如圖,AB是圓O的直徑,C是圓上的點,平面PAC⊥平面ABC,PA⊥AB.
(1)求證:PA⊥平面ABC;
(2)若PA=AC=2,求點A到平面PBC的距離.
科目:高中數學 來源: 題型:
【題目】關于函數有下述四個結論:
①是偶函數;②
在區間
單調遞減;
③在
有
個零點;④
的最大值為
.
其中所有正確結論的編號是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,離心率
,點
是橢圓上的一個動點,
面積的最大值是
.
(1)求橢圓的方程;
(2)若是橢圓上不重合的四點,
與
相交于點
,
,且
,求此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(Ⅰ)當時,求函數
的單調區間;
(Ⅱ)當時,若函數
與函數
的圖像總有兩個交點,設兩個交點的橫坐標分別為
,
.
①求的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,點
,點
是圓
上的一個動點,點
分別在線段
上,且滿足
,
.
(1)求點的軌跡方程;
(2)過點作斜率為
的直線
與點
的軌跡相交于
兩點,在
軸上是否存在點
,使得以
為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域是
,有下列四個命題,其中正確的有( )
A.對于(
,0),函數
在
上是單調增函數
B.對于(0,
),函數
存在最小值
C.存在(
,0),使得對于任意
,都有
成立
D.存在(0,
),使得函數
有兩個零點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的單調區間;
(2)設,求函數
在區間
上的最小值;
(3)某同學發現:總存在正實數,
,使
,試問:該同學的判斷是否正確?若不正確,請說明理由;若正確,請直接寫出
的取值范圍(不需要解答過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人的月工資由基礎工資和績效工資組成2010年每月的基礎工資為2100元、績效工資為2000元從2011年起每月基礎工資比上一年增加210元、績效工資為上一年的照此推算,此人2019年的年薪為______萬元(結果精確到
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com