【題目】選修4-4:坐標系與參數方程
在以直角坐標原點為極點,
的非負半軸為極軸的極坐標系下,曲線
的方程是
,將
向上平移1個單位得到曲線
.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若曲線的切線交曲線
于不同兩點
,切點為
.求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】某市環保部門對市中心每天的環境污染情況進行調查研究后,發現一天中環境綜合污染指數與時刻
(時)的關系為
,
,其中
是與氣象有關的參數,且
.若用每天
的最大值為當天的綜合污染指數,并記作
.
(1)令,
,求
的取值范圍;
(2)求的表達式,并規定當
時為綜合污染指數不超標,求當
在什么范圍內時,該市市中心的綜合污染指數不超標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標平面內,直線l過點P(1,1),且傾斜角α=.以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知圓C的極坐標方程為ρ=4sin θ.
(1)求圓C的直角坐標方程;
(2)設直線l與圓C交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視傳媒公司為了了解某地區電視觀眾對某類體育節目的收視情況,隨機抽取了名觀眾進行調查,如圖是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖,將日均收看該體育節目時間不低于
分鐘的觀眾稱為體育迷.
(1)若日均收看該體育節目時間在內的觀眾中恰有兩名女性,現日均收看時間在
內的觀眾中抽取兩名進行調查,求這兩名觀眾恰好一男一女的概率;
(2)若抽取人中有女性
人,其中女體育迷有
人,完成答題卡中的列聯表并判斷能否在犯錯誤概率不超過
的前提下認為體育迷與性別有關系?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
附表及公式:,
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某高三年級男生中隨機抽取50名測量身高,測量發現被測學生身高全部介于和
之間,將測量結果按如下方式分成6組:第1組
,第2組
,…,第6組
,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計該校高三年級男生身高的中位數;
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知
兩點分別為橢圓
的右頂點和上頂點,且
,右準線
的方程為
.
(1)求橢圓的標準方程;
(2)過點的直線交橢圓于另一點
,交
于點
.若以
為直徑的圓經過原點,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二年級某班的數學課外活動小組有6名男生,4名女生,從中選出4人參加數學競賽考試,用X表示其中男生的人數.
(1)請列出X的分布列;
(2)根據你所列的分布列求選出的4人中至少有3名男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近幾年,我國在電動汽車領域有了長足的發展,電動汽車的核心技術是動力總成,而動力總成的核心技術是電機和控制器,我國永磁電機的技術已處于國際領先水平.某公司計劃今年年初用196萬元引進一條永磁電機生產線,第一年需要安裝、人工等費用24萬元,從第二年起,包括人工、維修等費用每年所需費用比上一年增加8萬元,該生產線每年年產值保持在100萬元.
(1)引進該生產線幾年后總盈利最大,最大是多少萬元?
(2)引進該生產線幾年后平均盈利最多,最多是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
的參數方程為
(t為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)求的普通方程和曲線C的直角坐標方程;
(2)求曲線C上的點到距離的最大值及該點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com