日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當時,數列{bn}中的任意三項都不能構成等比數列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區間[1,a]上是否存在實數b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.
【答案】分析:(I)由a1=b1,a2<b2,結合已知可建立a,b的方程,從而可求a,b,進一步求出數列bn的通項及前n項和
(II)結合(I)知,假設amanat(m.n.t∈N+)成等比數列,且m≠n≠t,由假設推導可得,結合m≠t≠n∈N+的條件可知矛盾.
(III)設存在實數b∈[1,a],使C=A∩B≠∅,若m∈C,則m∈A,且m∈B,
由m∈A可設m=at,由m∈B可設mo=(a+1)s+b,整理可得分t為奇偶情況分別進行討論,若推出矛盾,則說明不存在,否則存在符合條件的實數b
解答:解:(Ⅰ)因為a1=b1,所以a=a+1+b,b=-1,(1分)
由a2<b2,得a2-2a-1<0,
所以,(3分)
因為a≥2且a∈N*,所以a=2,(4分)
所以bn=3n-1,{bn}是等差數列,
所以數列{bn}的前n項和.(5分)
(Ⅱ)由已知,假設成等比數列,其中m,n,t∈N*,且彼此不等,
,(6分)
所以
所以
若m+t-2n=0,則3n2-3mt=0,可得m=t,與m≠t矛盾;(7分)
若m+t-2n≠0,則m+t-2n為非零整數,為無理數,
所以3n2-3mt為無理數,與3n2-3mt是整數矛盾.(9分)
所以數列{bn}中的任意三項都不能構成等比數列.
(Ⅲ)設存在實數b∈[1,a],使C=A∩B≠∅,
設m∈C,則m∈A,且m∈B,
設m=at(t∈N*),m=(a+1)s+b(s∈N*),
則at=(a+1)s+b,所以
因為a,t,s∈N*,且a≥2,所以at-b能被a+1整除.(10分)
(1)當t=1時,因為b∈[1,a],a-b∈[0,a-1],
所以;(11分)
(2)當t=2n(n∈N*)時,a2n-b=[(a+1)-1]2n-b=(a+1)2n+-C2n1(a+1)+1-b,
由于b∈[1,a],所以b-1∈[0,a-1],0≤b-1<a+1,
所以,當且僅當b=1時,at-b能被a+1整除.(12分)
(3)當t=2n+1(n∈N*)時,a2n+1-b=[(a+1)-1]2n+1-b=(a+1)2n+1++C2n+11(a+1)-1-b,
由于b∈[1,a],所以b+1∈[2,a+1],
所以,當且僅當b+1=a+1,即b=a時,at-b能被a+1整除.(13分)
綜上,在區間[1,a]上存在實數b,使C=A∩B≠∅成立,且當b=1時,C={y|y=a2n,n∈N*};當b=a時,C={y|y=a2n+1,n∈N}.
點評:本題綜合考查了數列的求和、等比數列的定義、數列與集合綜合,考查了考生的邏輯推理能力與分析問題、解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數列{bn}中的任意三項都不能構成等比數列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區間[1,a]上是否存在實數b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數列{bn}中的任意三項都不能構成等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區間[1,a]上是否存在實數b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列{an}和{bn}中,數學公式,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數列{bn}的前n項和;
(Ⅱ)證明:當數學公式時,數列{bn}中的任意三項都不能構成等比數列.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天堂福利影院 | av电影院在线观看 | 亚洲在线视频 | 三区视频 | 91视频免费网站 | 国产激情在线观看 | 欧美日韩黄 | www.99日本精品片com | 亚洲精品一区二区三区蜜桃久 | 国产三区四区 | 五月激情天 | 一区二区亚洲 | 精品欧美一区二区三区久久久 | 中文字幕视频免费观看 | 日韩在线精品 | 一区二区三区高清 | 欧美一区二区三区在线视频 | 成人影院在线 | 国产精品三区在线 | 久久午夜影院 | 亚洲国产精品一区二区久久 | 羞羞视频在线免费 | 欧美高清视频一区二区三区 | 免费看性生交大片 | 欧美区在线 | 黄色在线免费观看 | 在线欧美日韩 | 日韩av高清在线 | 美女日日日 | 青草免费 | 国产乱码精品一区二区三区av | 国产全黄 | 日本99精品| 一级特黄色大片 | 草逼网首页 | 欧美午夜在线 | 国产激情在线 | 国产欧美日韩综合精品 | av 一区二区三区 | 亚洲视频a | 亚洲精品视频一区 |