日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
為平面內的兩個定點,動點P滿足|PF1|+|PF2|=4,記點P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)判斷原點O關于直線x+y-1=0的對稱點R是否在曲線Γ包圍的范圍內?說明理由.
(注:點在曲線Γ包圍的范圍內是指點在曲線Γ上或點在曲線Γ包圍的封閉圖形的內部)
(Ⅲ)設點O為坐標原點,點A,B,C是曲線Γ上的不同三點,且
OA
+
OB
+
OC
=
0
.試探究:直線AB與OC的斜率之積是否為定值?證明你的結論.
分析:(I)利用橢圓的定義可知:點P的軌跡是以F1(-
2
,0),F2(
2
,0)
為焦點,4為長軸長的橢圓. 據此即可求出.
(II)解法一:設原點O關于直線x+y-1=0的對稱點為R(m,n),利用點關于直線的對稱點的性質得
n
m
=1
m
2
+
n
2
-1=0
,解出即可得到點R的坐標,判定是否滿足在橢圓內部的條件即可;
解法二:設原點O關于直線x+y-1=0的對稱點為R(m,n),利用點關于直線的對稱點的性質得:
n
m
=1
m
2
+
n
2
-1=0
,解得
m=1
n=1
即R(1,1).得出直線OR的方程:y=x.與橢圓的方程聯立求出其交點G,H,判斷點R是否在線段GH上即可;
(Ⅲ)解法一:設A(x1,y1),B(x2,y2),C(x3,y3).利用
OA
+
OB
+
OC
=
0
得x1+x2+x3=0,y1+y2+y3=0.可設直線AB的方程為y=kx+n(k≠0),代入
x2
4
+
y2
2
=1
并整理得:(1+2k2)x2+4knx+2n2-4=0,滿足△>0,即可得到根與系數的關系,進而得到點C的坐標,利用斜率計算公式即可判斷直線AB與OC的斜率之積是否定值;
解法二:設A(x1,y1),B(x2,y2),C(x3,y3).利用
OA
+
OB
+
OC
=
0
得x1+x2+x3=0,y1+y2+y3=0.因為點A(x1,y1),B(x2,y2),在橢圓上,所以有:
x12
4
+
y12
2
=1
x22
4
+
y22
2
=1
,再利用“點差法”即可判斷出結論.
解答:解:(Ⅰ)由條件可知,點P到兩定點F1(-
2
,0),F2(
2
,0)
的距離之和為定值4,
所以點P的軌跡是以F1(-
2
,0),F2(
2
,0)
為焦點的橢圓. 
a=2,c=
2
,所以b=
2

故所求方程為
x2
4
+
y2
2
=1

(Ⅱ)解法一:設原點O關于直線x+y-1=0的對稱點為R(m,n),由點關于直線的對稱點的性質得:
n
m
=1
m
2
+
n
2
-1=0
,解得
m=1
n=1
即R(1,1).
此時
12
4
+
12
2
=
3
4
<1

∴R在曲線Γ包圍的范圍內.
解法二:設原點O關于直線x+y-1=0的對稱點為R(m,n),
由點關于直線的對稱點的性質得:
n
m
=1
m
2
+
n
2
-1=0
,解得
m=1
n=1
即R(1,1).
∴直線OR的方程:y=x.
設直線OR交橢圓
x2
4
+
y2
2
=1
于G和H,
y=x
x2
4
+
y2
2
=1

得:
x=
2
3
3
y=
2
3
3
x=-
2
3
3
y=-
2
3
3
G(
2
3
3
2
3
3
)
H(-
2
3
3
,-
2
3
3
)

顯然點R在線段GH上.
∴R在曲線Γ包圍的范圍內.
(Ⅲ)解法一:設A(x1,y1),B(x2,y2),C(x3,y3).
OA
+
OB
+
OC
=
0
得x1+x2+x3=0,y1+y2+y3=0.
可設直線AB的方程為y=kx+n(k≠0),代入
x2
4
+
y2
2
=1
并整理得:(1+2k2)x2+4knx+2n2-4=0,
依題意,△>0,則x1+x2=-
4kn
1+2k2
,y1+y2=k(y1+y2)+2n=
2n
1+2k2

從而可得點C的坐標為(
4kn
1+2k2
,-
2n
1+2k2
)
kOC=-
1
2k

因為kABkOC=-
1
2

所以直線AB與OC的斜率之積為定值.
解法二:設A(x1,y1),B(x2,y2),C(x3,y3).
OA
+
OB
+
OC
=
0
得x1+x2+x3=0,y1+y2+y3=0.
因為點A(x1,y1),B(x2,y2),在橢圓上,所以有:
x12
4
+
y12
2
=1
x22
4
+
y22
2
=1

兩式相減,整理得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0,
從而有
y1-y2
x1-x2
y1+y2
x1+x2
=-
1
2

又x1+x2=-x3,y1+y2=-y3kOC=
y3
x3
kAB=
y1-y2
x1-x2

因為kABkOC=-
1
2

所以直線AB與OC的斜率之積為定值.
點評:本題綜合考查了橢圓的定義、標準方程及其性質、直線與橢圓相交問題轉化為一元二次方程得根與系數的關系、向量的運算、斜率的計算公式、點差法、軸對稱等基礎知識與基本方法,考查了多種方法解決同一個問題、推理能力和計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•汕尾二模)cos150°的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•汕尾二模)如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(Ⅰ)求證:DA⊥平面PAB;
(Ⅱ) 求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•汕尾二模)同樣規格的黑、白兩色正方形瓷磚鋪設的若干圖案,則按此規律第23個圖案中需用黑色瓷磚
100
100
塊.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•汕尾二模)如圖所示:有三根針和套在一根針上的若干金屬片.按下列規則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數記為f(n);
①f(3)=
7
7

②f(n)=
2n-1
2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•汕尾二模)已知正方體被過一面對角線和它對面兩棱中點的平面截去一個三棱臺后的幾何體的主(正)視圖和俯視圖如下,則它的左(側)視圖是(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天天操天天拍 | 国产成人免费视频网站高清观看视频 | 亚洲国产精品精华液com | 日韩欧美精品在线视频 | 啪一啪av | 成人亚洲视频 | 日韩一区电影 | 欧美不卡二区 | 欧美成人一区二区三区片免费 | 欧美大片在线观看 | 夜夜躁日日躁狠狠久久88av | 伊人久久视频 | 久久99精品视频 | 日韩av一区在线观看 | 午夜日韩视频 | 日韩一级淫片 | 天天躁日日躁狠狠躁av麻豆 | 麻豆freexxxx性91精品 | 欧美在线综合 | 久久国内精品 | 国产一区免费 | 国产精品美女久久久久人 | 狠狠色噜噜狠狠狠8888米奇 | 久久h| 日韩一区二区在线视频 | 91一区二区在线 | 久久伊人久久 | 国内精品久久久久久久97牛牛 | 骚鸭av| 国产欧美亚洲精品 | h视频免费观看 | 国产视频久久久 | 国产欧美日韩精品在线 | 精品日韩一区二区 | 亚洲天堂一区 | 久久资源av | 娇妻被3p高潮爽视频 | 五月激情六月综合 | 精品久久久国产 | 日韩在线观看中文字幕 | 日本一区二区三区四区 |