如圖,直線過圓心
,交⊙
于
,直線
交⊙
于
(不與
重合),直線
與⊙
相切于
,交
于
,且與
垂直,垂足為
,連結(jié)
.
求證:(1);
(2).
(1)利用弦切角∠BAC=∠CAG.(2)利用三角形相似。 AC2=AE·AF.
解析試題分析:(1)連結(jié)BC,∵AB是直徑,
∴∠ACB=90°,∴∠ACB=∠AGC=90°.
∵GC切⊙O于C,∴∠GCA=∠ABC.
∴∠BAC=∠CAG. 5分
(2)連結(jié)CF,∵EC切⊙O于C, ∴∠ACE=∠AFC.
又∠BAC=∠CAG, ∴△ACF∽△AEC.
∴,∴AC2=AE·AF. 10分
考點(diǎn):本題主要考查弦切角定理,圓的性質(zhì),三角形相似。
點(diǎn)評(píng):簡單題,利用弦切角定理及三角形相似知識(shí),證明角相等、確定線段長度的關(guān)系,是常見題目。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知切⊙
于點(diǎn)E,割線PBA交⊙
于A、B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C、D.
求證:(Ⅰ); (Ⅱ)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線
的極坐標(biāo)方程為
,且點(diǎn)A在直線
上。
(Ⅰ)求的值及直線
的直角坐標(biāo)方程;
(Ⅱ)圓C的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓外有一點(diǎn)
,作圓
的切線
,
為切點(diǎn),過
的中點(diǎn)
,作割線
,交圓于
、
兩點(diǎn),連接
并延長,交圓
于點(diǎn)
,連續(xù)
交圓
于點(diǎn)
,若
.
(1)求證:△∽△
;
(2)求證:四邊形是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,PA為圓的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5,
的平分線與BC和圓
分別交于點(diǎn)D和E。
(1)求證:;
(2)求AD·AE的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,A,B,C,D四點(diǎn)在同一圓上,AD的延長線與BC的延長線交于E點(diǎn),且EC=ED.
(1)證明:CD∥AB;
(2)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,已知與圓
相切于點(diǎn)
,經(jīng)過點(diǎn)
的割線
交圓
于點(diǎn)
、
,
的平分線分別交
、
于點(diǎn)
、
.
求證:(1) .
(2) 若求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com