已知橢圓C:的一個焦點是(1,0),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點,設(shè)點A關(guān)于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標(biāo).
(1);(2)定點
(1,0).
解析試題分析:(1)求橢圓C的方程,由題意,焦點坐標(biāo)為,可求得
,再根據(jù)橢圓兩個焦點與短軸的一個端點構(gòu)成等邊三角形.由等邊三角形的性質(zhì),可求得
和
的關(guān)系式,可求得
,進(jìn)而求得
,則橢圓的方程可得;(2)求證:直線
過
軸上一定點,并求出此定點坐標(biāo).這是過定點問題,這類題的處理方法有兩種,一.可設(shè)出直線方程為
,然后利用條件建立
等量關(guān)系進(jìn)行消元,借助于直線系的思想找出定點.二.從特殊情況入手,先探求定點,再證明與變量無關(guān).本題可設(shè)直線
的方程為:
,與橢圓方程
聯(lián)立消去
,設(shè)出
,
,則可利用韋達(dá)定理求得
和
的表達(dá)式,根據(jù)
點坐標(biāo)求得關(guān)于
軸對稱的點
的坐標(biāo),設(shè)出定點
,利用
求得
,從而得證.
試題解析:(1)橢圓C:的一個焦點是(1,0),所以半焦距
,又因為橢圓兩個焦點與短軸的一個端點構(gòu)成等邊三角形,所以
,解得
,所以橢圓C的標(biāo)準(zhǔn)方程為
;· 5分
(2)設(shè)直線:
與
聯(lián)立并消去
得:
.
記,
,
,
. 8分
由A關(guān)于軸的對稱點為
,得
,根據(jù)題設(shè)條件設(shè)定點為
(
,0),
得,即
.
所以
即定點(1,0). 13分
考點:橢圓的簡單性質(zhì);橢圓的標(biāo)準(zhǔn)方程;直線與圓錐曲線的綜合問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動點P到點A(-2,0)與點B(2,0)的斜率之積為-,點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若點Q為曲線C上的一點,直線AQ,BQ與直線x=4分別交于M,N兩點,直線BM與橢圓的交點為D.求證,A,D,N三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點
,動點
在
軸上的正射影為點
,且滿足直線
.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)當(dāng)時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
經(jīng)過點
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右焦點分別為
,過點
的直線交橢圓
于
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
(
)過點
,且橢圓
的離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動點在直線
上,過
作直線交橢圓
于
兩點,且
為線段
中點,再過
作直線
.證明:直線
恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是拋物線
上的兩個點,點
的坐標(biāo)為
,直線
的斜率為
.設(shè)拋物線
的焦點在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點,且,過
兩點分別作W的切線,記兩切線的交點為
. 判斷四邊形
是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為
.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標(biāo)為1,直線PE、PF與圓(
)相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓與雙曲線
有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線
于M、N兩點,且
.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右頂點分別為
、
,離心率
.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且
.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且,求直線MN的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com