日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

在△ABC中,三個內(nèi)角是A,B,C的對邊分別是a,b,c,其中c=10,且
cosA
cosB
=
b
a
=
4
3

(1)求證:△ABC是直角三角形;
(2)設圓O過A,B,C三點,點P位于劣弧AC上,∠PAB=60°,求四邊形ABCP的面積.
分析:(1)由題設條件
cosA
cosB
=
b
a
=
4
3
.利用正弦定理可得
cosA
cosB
=
sinB
sinA
.,整理得討論知,A=B或者A+B=
π
2
.又
b
a
=
4
3
,所以A+B=
π
2

由此可以得出,△ABC是直角三角形;
(2)將四邊形ABCP的面積表示成兩個三角形S△ABC與S△PAC的和,S△ABC易求,S△PAC需求出線段PA的長度與sin∠PAC的值,利用三角形的面積公式求解即可.
解答:精英家教網(wǎng)解:(1)證明:根據(jù)正弦定理得,
cosA
cosB
=
sinB
sinA

整理為:sinAcosA=sinBcosB,即sin2A=sin2B,
因為0<A<π,0<B<π,所以0<2A<2π,0<2B<2π,所以A=B,或者A+B=
π
2

由于
b
a
=
4
3
,所以A≠B,所以A+B=
π
2
,即C=
π
2

故△ABC是直角三角形.
(2)由(1)可得:a=6,b=8.
在Rt△ABC中,sin∠CAB=
BC
AB
=
3
5
,cos∠CAB=
4
5

sin∠PAC=sin(60°-∠CAB)
=sin60°cos∠CAB-cos60°sin∠CAB
=
3
2
×
4
5
-
1
2
×
3
5
=
1
10
(4
3
-3)

連接PB,在Rt△APB中,AP=AB•cos∠PAB=5.
所以四邊形ABCP的面積
S四邊形△ABCP=S△ABC+S△PAC
=
1
2
ab+
1
2
AP•AC•sin∠PAC

=24+
1
2
×5×8×
1
10
(4
5
-3)=18+8
3
點評:本題第一問考查正弦定理與分類討論的思想,第二問是探究型題,需分部來求四邊形的面積,化整為零,先求局部再求整體,方法較好.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90o,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,三個內(nèi)角A、B、C所對的邊分別為a、b、c,設復數(shù)z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復平面內(nèi)所對應的點在直線y=x上.
(1)求角B的大小;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于直角坐標平面內(nèi)的任意兩點A(x1,y1)、B(x2,y2),定義它們之間的一種“距離”:‖AB‖=|x1-x2|+|y1-y2|.給出下列三個命題:
①若點C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,則‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①“若x+y=0,則x,y互為相反數(shù)”的逆命題是“若x,y互為相反數(shù),則x+y=0”.
②在平面內(nèi),F(xiàn)1、F2是定點,|F1F2|=6,動點M滿足||MF1|-|MF2||=4,則點M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件.
④“若-3<m<5則方程
x2
5-m
+
y2
m+3
=1
是橢圓”.
⑤在四面體OABC中,
OA
=
a
OB
=
b
OC
=
c
,D為BC的中點,E為AD的中點,則
OE
=
1
2
a
+
1
4
b
+
1
4
c

⑥橢圓
x2
25
+
y2
9
=1
上一點P到一個焦點的距離為5,則P到另一個焦點的距離為5.
其中真命題的序號是:
①②③⑤⑥
①②③⑤⑥

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

△ABC中,三個內(nèi)角A、B、C所對的邊分別為a、b、c,設復數(shù)z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復平面內(nèi)所對應的點在直線y=x上.
(1)求角B的大小;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩国产精品一区二区三区 | 二区不卡 | 狠狠躁日日躁夜夜躁东南亚 | 成人在线亚洲 | 99爱视频 | 国产aaaaav久久久一区二区 | 久久一二三区 | 欧美精品色 | 国产一区二区三区免费 | 欧美日日| 国产天堂一区二区三区 | 最新日韩一区 | 国产午夜手机精彩视频 | h片在线| 91高清视频| 日韩三区 | 91久久国产综合久久91精品网站 | 国产精品一二 | 亚洲精品做爰大胆视频在线 | 视频在线不卡 | 成人精品| 久久88| 在线第一页| 免费一级欧美片在线观看网站 | 在线亚洲激情 | 波多野结衣av中文字幕 | 欧美日韩一级二级三级 | 一区二区在线看 | 日本不卡一区二区三区在线观看 | 国产精品久久一区 | 欧美午夜视频在线观看 | 中文字幕观看 | 久久精品亚洲 | 国产色网| 亚洲人人爽 | 亚洲精品1 | 久久视频一区二区 | 日韩国产免费观看 | a天堂中文在线 | 蜜桃久久 | 亚洲精品视频导航 |