在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,=2
=2.
(1)求證:;
(2)求證:∥平面
;
(3)求三棱錐的體積
.
(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=,AC=2.取
中點
,連AF, EF,
∵PA=AC=2,∴PC⊥.
∵PA⊥平面ABCD,平面ABCD,
∴PA⊥,又∠ACD=90°,即
,
∴,∴
,
∴.
∴.
∴PC⊥
.
(2)證法一:取AD中點M,連EM,CM.則
EM∥PA.∵EM 平面PAB,PA
平面PAB,
∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC 平面PAB,AB
平面PAB,
∴MC∥平面PAB.
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC平面EMC,∴EC∥平面PAB.
證法二:延長DC、AB,設它們交于點N,連PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C為ND的中點.
∵E為PD中點,∴EC∥PN
∵EC 平面PAB,PN
平面PAB,∴EC∥平面PAB. 、
(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=
.、
則V=.
【解析】略
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD與底面ABCD垂直,PD=DC,E是PC的中點,作EF
于點F(Ⅰ)證明PA
平面EBD.
(Ⅱ)證明PB平面EFD.
(Ⅲ)求二面角的余弦值;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com