【題目】如圖,菱形ABCD的邊長為4,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對角線AC折起,得到三棱錐B﹣ACD,點M是棱BC的中點,且DM=2 .
(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求點B到平面DOM的距離.
【答案】
(1)解:∵△ABC中,O為AC的中點,M為BC的中點,
∴OM∥AB.
∵OM平面ABD,AB平面ABD,
∴OM∥平面ABD
(2)解:∵在菱形ABCD中,OD⊥AC,
∴在三棱錐B﹣ACD中,OD⊥AC.
在菱形ABCD中,AB=AD=4,∠BAD=60°,可得BD=4.
∵O為BD的中點,∴OD= BD=2.
∵O為AC的中點,M為BC的中點,∴OM= AB=2
又∵OD2+OM2=8=DM2,∴∠DOM=90°,即OD⊥OM.
∵AC平面ABC,OM平面ABC,AC∩OM=O,
∴OD⊥平面ABC.
∵OD平面DOM,∴平面DOM⊥平面ABC
(3)解:由(2)得OD⊥平面BOM,可得OD是三棱錐D﹣BOM的高.
設點B到面DOM距離為h,由OD=2,
∴ ,
∵因為VB﹣DOM=VD﹣BOM,
∴ S△DOMh=
S△ABCOD,即
,解得
,
即點B到平面DOM的距離等于
【解析】(1)根據三角形的中位線定理,可得OM∥AB.再由線面平行判定定理,得到OM∥平面ABD;(2)在菱形ABCD中,AB=AD=4,∠BAD=60°,可得BD=4,OD= BD=2,從而算出∠DOM=90°,即OD⊥OM.根據OD⊥AC,利用線面垂直判定定理得到OD⊥平面ABC,進而得出平面DOM⊥平面ABC.(3)分別算出△DOM的△ABC面積,利用三棱錐B﹣DOM與三棱錐D﹣BOM體積相等加以計算,可得點B到平面DOM的距離.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對平面與平面垂直的判定的理解,了解一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,且0<x1<x2 , 給出下列命題: ① <1
②x2f(x1)<x1f(x2)
③當lnx>﹣1時,x1f(x1)+x2f(x2)>2x2f(x1)
④x1+f(x1)<x2+f(x2)
其中正確的命題序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為D,若對于任意x1 , x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數f(x)在D上為非減函數.設函數f(x)在[0,1]上為非減函數,且滿足以下三個條件:①f(0)=0;② ;③f(1﹣x)=1﹣f(x).則
= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電腦游戲中,“主角”的生存機會往往被預先設定,如某槍戰游戲中,“主角”被設定生存機會5次,每次生存承受射擊8槍(被擊中8槍則失去一次生命機會).假設射擊過程均為單子彈發射,試為“主角”耗用生存機會的過程設計一個算法,并畫出程序框圖.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幼兒園為訓練孩子的數字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數字
(1)求取出的3張卡片上的數字互不相同的概率;
(2)求隨機變量X的分布列及數學期望;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線C的參數方程: ,直線l的參數方程為
.
(1)若直線l與曲線C只有一個公共點,求實數a;
(2)若點P,Q分別為直線l與曲線C上的動點,若 ,求實數a.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com