日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2012•資陽一模)已知函數f(x)=2lnx-x2+ax,a∈R.
(1)當a=2時,求函數f(x)的圖象在x=1處的切線的方程;
(2)若函數f(x)-ax+m=0在[
1e
,e]
上有兩個不等的實數根,求實數m的取值范圍;
(3)若函數f(x)的圖象與x軸交于不同的點A(x1,0),B(x2,0),且0<x1<x2,求證:f′(px1+qx2)<0(其中實數p,q滿足0<p≤q,p+q=1)
分析:(1)先求出切點坐標,然后利用導數求出k=f'(1),最后根據點斜式求出切線方程即可;
(2)方程f(x)-ax+m=0即為2lnx-x2+m=0,令g(x)=2lnx-x2+m,利用導數研究該函數在[
1
e
,e]
上的最小值,要使方程f(x)-ax+m=0在[
1
e
,e]
上有兩個不相等的實數根,則有
g(1)=m-1>0
g(
1
e
)=m-2-
1
e2
≤0
,解之即可;
(3)將a用x1與x2表示,然后求出導函數f′(x),從而得到f′(px1+qx2),然后利用導數研究函數的單調性證明f′(px1+qx2)<0.
解答:解:(1)當a=2時,f(x)=2lnx-x2+2x,
f′(x)=
2
x
-2x+2
,切點坐標為(1,1),切線的斜率k=f'(1)=2,
則切線方程為y-1=2(x-1),即y=2x-1.(2分)
(2)方程f(x)-ax+m=0即為2lnx-x2+m=0,
令g(x)=2lnx-x2+m,則g′(x)=
2
x
-2x=
-2(x+1)(x-1)
x
,
因為x∈[
1
e
,e]
,故g'(x)=0時,x=1.
1
e
<x<1
時,g'(x)>0;當1<x<e時,g'(x)<0.
故函數g(x)在x=1處取得極大值g(1)=m-1,(4分)
g(
1
e
)=m-2-
1
e2
,g(e)=m+2-e2,
g(e)-g(
1
e
)=4-e2+
1
e2
<0
,則g(e)<g(
1
e
)
,
故函數g(x)在[
1
e
,e]
上的最小值是g(e).(6分)
方程f(x)-ax+m=0在[
1
e
,e]
上有兩個不相等的實數根,則有
g(1)=m-1>0
g(
1
e
)=m-2-
1
e2
≤0

解得1<m≤2+
1
e2
,故實數m的取值范圍是(1,2+
1
e2
]
.(8分)
(3)∵函數f(x)的圖象與x軸交于兩個不同的點A(x1,0),B(x2,0),2lnx-x2+ax=0的兩個根為x1,x2,
2lnx1-
x
2
1
+ax1=0
2lnx2-
x
2
2
+ax2=0
兩式相減得a=(x1+x2)-
2(lnx1-lnx2)
x1-x2
,f(x)=2lnx-x2+ax,f′(x)=
2
x
-2x+a
,
f′(px1+qx2)=
2
px1+qx2
-2(px1+qx2)+a
=
2
px1+qx2
-2(px1+qx2)+(x1+x2)-
2(lnx1-lnx2)
x1-x2

=
2
px1+qx2
-
2(lnx1-lnx2)
x1-x2
-(2p-1)x1-(2q-1)x2

=
2
px1+qx2
-
2(lnx1-lnx2)
x1-x2
+(2p-1)(x2-x1)
.(*)(10分)
∵0<p≤q,p+q=1,則2p≤1,又0<x1<x2,∴(2p-1)(x2-x1)≤0,
下證
2
px1+qx2
-
2(lnx1-lnx2)
x1-x2
<0
,即證明
x2-x1
px1+qx2
+ln
x1
x2
<0

t=
x1
x2
,∵0<x1<x2,∴0<t<1,
即證明u(t)=
1-t
pt+q
+lnt<0
在0<t<1上恒成立,(12分)
u′(t)=
1
t
-
1
(pt+q)2
=
p2t2+(2pq-1)t+q2
t(pt+q)2
=
p2t2-t(p2+q2)+q2
t(pt+q)2
=
p2(t-1)(t-
q2
p2
)
t(pt+q)2

∵0<p≤q,∴
q2
p2
≥1
,又0<t<1,∴u'(t)>0,
∴u(t)在(0,1)上是增函數,則u(t)<u(1)=0,從而知
x2-x1
px1+qx2
+ln
x1
x2
<0
,
故(*)<0,即f'(px1+qx2)<0成立.(14分)
點評:本題主要考查了利用導數研究曲線上某點切線方程,以及利用導數研究函數的單調性,同時考查了轉化的思想和計算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•資陽一模)設函數f(x)=
21-x,x≤0
f(x-1),x>0
若關于x的方程f(x)=x+a有且只有兩個實根,則實數a的范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•資陽一模)已知向量
a
,
b
為單位向量,且它們的夾角為60°,則|
a
-3
b
|
=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•資陽一模)若a>b,則下列命題成立的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•資陽一模)已知函數f(x)=a-
2
2x+1
是奇函數,其反函數為f-1(x),則f-1(
3
5
)
=(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 永久黄网站色视频免费观看w | 色.com| 国产一区二区三区久久久久久久久 | 91精品电影 | 成人精品一区二区三区中文字幕 | 亚洲国产成人久久一区二区三区 | 国产成人精品一区二区三区 | 女男羞羞视频网站免费 | a在线观看 | 久久99国产精品久久99大师 | 日韩精品视频在线免费观看 | 日韩在线一区二区三区 | 亚洲一区中文字幕在线观看 | 国产精品欧美一区二区三区 | 亚洲专区国产精品 | 亚洲天堂字幕 | 日韩一级免费 | 午夜精品久久久久久久久久久久久蜜桃 | 亚洲成人二区 | 日韩电影免费在线观看中文字幕 | 久久久123 | 在线播放亚洲 | 在线视频97 | 国产精品美女久久久 | 国产精品视频1区 | 日韩www| 国偷自产av一区二区三区 | 日一区二区 | 日本a视频| 久久亚洲91 | 国产精品夜夜爽 | 久久精品无码一区二区日韩av | 一本色道精品久久一区二区三区 | 欧美韩国日本一区 | 久久中文网 | 日本三级视频 | 国产伦精品一区二区三区照片91 | 精品久久一区二区 | 风间由美一区二区三区在线观看 | 亚洲自拍一区在线观看在线观看 | 欧美黄色片免费观看 |