【題目】正整數數列滿足:
,
(1)寫出數列的前5項;
(2)將數列中所有值為1的項的項數按從小到大的順序依次排列,得到數列
,試用
表示
(不必證明);
(3)求最小的正整數,使
.
科目:高中數學 來源: 題型:
【題目】已知拋物線,準線方程為
,直線
過定點
(
)且與拋物線交于
、
兩點,
為坐標原點.
(1)求拋物線的方程;
(2)是否為定值,若是,求出這個定值;若不是,請說明理由;
(3)當時,設
,記
,求
的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內有20cm深的溶液.現將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內的溶液不會溢出,角的最大值是多少?
(2)現需要倒出不少于的溶液,當
時,能實現要求嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】年諾貝爾生理學或醫學獎獲得者威廉·凱林(WilliamG.KaelinJr)在研究腎癌的
抑制劑過程中使用的輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內勻速滴下液體(滴管內液體忽略不計),設輸液開始后
分鐘,瓶內液面與進氣管的距離為
厘米,已知當
時,
.如果瓶內的藥液恰好
分鐘滴完.則函數
的圖像為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國古代數學家劉徽用圓內接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內接正六邊形算起,令邊數一倍一倍地增加,即12,24,48,…,192,…,逐個算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候
的近似值是3.141024,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產生了巨大影響.按照上面“割圓術”,用正二十四邊形來估算圓周率,則
的近似值是( )(精確到
).(參考數據
)
A.3.14B.3.11C.3.10D.3.05
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在①,
,②
,
,③
,
三個條件中任選一個補充在下面問題中,并加以解答.
已知的內角A,B,C的對邊分別為a,b,c,若
,______,求
的面積S.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,四邊形是等腰梯形,
,
,
,
為
的中點.將
沿
折起,如圖2,點
是棱
上的點.
(1)若為
的中點,證明:平面
平面
;
(2)若,試確定
的位置,使二面角
的余弦值等于
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com