日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知等比數列{an}的前n項和為Sn,若am,am+2,am+1(m∈N*)成等差數列,試判斷Sm,Sm+2,Sm+1是否成等差數列,并證明你的結論.
分析:直接利用等差數關系,求出公比,然后判斷當q=1時,Sm,Sm+2,Sm+1不成等差數列.當q=-
1
2
時,Sm,Sm+2,Sm+1成等差數列.
證法1:證明(Sm+Sm+1)-2Sm+2=0即可.證法2:利用等比數列求出Sm+Sm+1與2Sm+2的值相等即可.
解答:解:設等比數列{an}的首項為a1,公比為q(a1≠0,q≠0),若am,am+2,am+1成等差數列,
則2am+2=am+am+1
∴2a1qm+1=a1qm-1+a1qm
∵a1≠0,q≠0,∴2q2-q-1=0.
解得q=1或q=-
1
2

當q=1時,∵Sm=ma1,Sm+1=(m+1)a1,Sm+2=(m+2)a1
∴2Sm+2≠Sm+Sm+1
∴當q=1時,Sm,Sm+2,Sm+1不成等差數列.
q=-
1
2
時,Sm,Sm+2,Sm+1成等差數列.下面給出兩種證明方法.
證法1:∵(Sm+Sm+1)-2Sm+2=(Sm+Sm+am+1)-2(Sm+am+1+am+2)=-am+1-2am+2=-am+1-2am+1q=-am+1-2am+1(-
1
2
)
=0,
∴2Sm+2=Sm+Sm+1
∴當q=-
1
2
時,Sm,Sm+2,Sm+1成等差數列.
證法2:∵2Sm+2=
2a1[1-(-
1
2
)
m+2
]
1+
1
2
=
4
3
a1[1-(-
1
2
)
m+2
]

Sm+Sm+1=
a1[1-(-
1
2
)
m
]
1+
1
2
+
a1[1-(-
1
2
)
m+1
]
1+
1
2
=
2
3
a1[2-(-
1
2
)
m
-(-
1
2
)
m+1
]
=
2
3
a1[2-4×(-
1
2
)
m+2
+2×(-
1
2
)
m+2
]
=
4
3
a1[1-(-
1
2
)
m+2
]

∴2Sm+2=Sm+Sm+1
∴當q=-
1
2
時,Sm,Sm+2,Sm+1成等差數列.
點評:本小題主要考查等差數列、等比數列的通項公式與前n項和公式等基礎知識,考查化歸與轉化、分類與整合的數學思想方法,以及推理論證能力和運算求解能力
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、已知等比數列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}滿足a1•a7=3a3a4,則數列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數列的第5項,第3項,第2項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=log2an,求數列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色爱天堂 | 国产精品毛片va一区二区三区 | 毛片毛片毛片毛片毛片 | 欧美色综合天天久久综合精品 | 人人九九精| 亚洲永久免费 | 欧美伦理一区二区 | aaa免费视频 | 影音先锋在线观看视频 | 成年人毛片 | 欧美黑人一区二区三区 | 婷婷在线播放 | 天天操免费视频 | 久久久久免费视频 | 午夜成人在线视频 | 久久视频一区 | 性做久久久 | 四虎影院成人 | 精品亚洲国产成人av制服丝袜 | 欧美成人久久 | 久久成人免费视频 | www.男人天堂 | 九九九色 | 午夜成人在线视频 | 精品国产欧美 | 国产一级片视频 | 在线免费观看av片 | 亚洲日本中文字幕 | 欧美又大粗又爽又黄大片视频 | 亚洲综合一区二区三区 | 日本中文字幕一区 | 国产精品欧美精品 | 黄色网视频 | 日韩国产精品一区二区 | 日本免费不卡视频 | 一区在线观看视频 | 成人精品免费 | 国产成人免费视频 | 美女无遮挡网站 | 国产精品免费在线 | 欧美国产激情 |