【題目】設函數f(x)=x2﹣aln(x+2),g(x)=xex , 且f(x)存在兩個極值點x1、x2 , 其中x1<x2 .
(1)求實數a的取值范圍;
(2)求g(x1﹣x2)的最小值;
(3)證明不等式:f(x1)+x2>0.
【答案】
(1)解:由題:f′(x)=2x﹣ (x>﹣2).
∵f(x)存在兩個極值點x1、x2,其中x1<x2
∴關于x的方程2x﹣ =0,即2x2+4x﹣a=0在(﹣2,+∞)內有不等實根
令S(x)=2x2+4x(x>﹣2),T(x)=a,
則﹣2<a<0,
∴實數a的取值范圍是(﹣2,0)
(2)解:由(1)可知
∴g(x)=xex得g(x)=(x+1)ex
∴當x∈(﹣2,﹣1)時,g′(x)<0,即g(x)在(﹣2,﹣1)單調遞減;當x∈(﹣1,0)時,g′(x)>0,即g(x)在(﹣1,0)單調遞增
∴g(x1﹣x2)min=g(﹣1)=﹣
(3)證明:由(1)知 ,
∴ =
令﹣x2=x,則0<x<1且
F(x)=﹣x﹣
F′(x)=﹣1+ (0<x<1)
∴G(x)= (0<x<1)
G′(x)=﹣ =
∵0<x<1,
∴G′(x)=﹣
∵0<x<1,∴G′(x)<0,即F′(x)在(0,1)上是減函數.
∴F′(x)>F′(1)>0,
∴F(x)在(0,1)上是增函數
∴F(x)<F(1)=﹣1,即 ,即f(x1)+x2>0
【解析】(1)f(x)存在兩個極值點,等價于其導函數有兩個相異零點;(2)先找出(x1﹣x2)的取值范圍,再利用g(x)的導函數可找出最小值;(3)適當構造函數,并注意x1與x2的關系,轉化為函數求最大值問題,證明相關不等式.
【考點精析】關于本題考查的函數的極值與導數和函數的最大(小)值與導數,需要了解求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,離心率為
的橢圓
的左頂點為
,過原點
的直線(與坐標軸不重合)與橢圓
交于
兩點,直線
分別與
軸交于
,
兩點.若直線
斜率為
時,
.
(1)求橢圓的標準方程;
(2)試問以為直徑的圓是否經過定點(與直線
的斜率無關)?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數滿足
且
,則稱函數
為“
函數”.
試判斷
是否為“
函數”,并說明理由;
函數
為“
函數”,且當
時,
,求
的解析式,并寫出在
上的單調遞增區間;
在
條件下,當
時,關于
的方程
為常數
有解,記該方程所有解的和為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足 =
,
(1)求角C的大小;
(2)設函數f(x)=2sinxcosxcosC+2sin2xsinC﹣ ,求函數f(x)在區間[0,
]上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐S﹣ABCD中,底面ABCD為平行四邊形,側面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2 ,SB=SC=
.
(1)設平面SCD與平面SAB的交線為l,求證:l∥AB;
(2)求證:SA⊥BC;
(3)求直線SD與面SAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左焦點為
,右頂點為
,離心率為
,已知點
是拋物線
的焦點,點
到拋物線準線的距離是
.
(1)求橢圓的方程和拋物線
的方程;
(2)若是拋物線
上的一點且在第一象限,滿足
,直線
交橢圓于
兩點,且
,當
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com