日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常數,且ω>0)的最小正周期為2,且當x=
1
3
時,f(x)取得最大值2.
(1)求函數f(x)的表達式;
(2)求函數f(x+
1
6
)的單調遞增區間,并指出該函數的圖象可以由函數y=2sinx,x∈R的圖象經過怎樣的變換得到?
(3)在閉區間[
21
4
23
4
]上是否存在f(x)的對稱軸?如果存在,求出其對稱軸方程;如果不存在,則說明理由.
(1)∵函數f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常數,且ω>0)
f(x)=
A2+B2
sin(ωx+?)

而f(x)的最小正周期為2,,∴
ω
=2
,即ω=π
又當x=
1
3
時,f(x)取得最大值2,
A2+B2=4
Asin
π
3
+Bcos
π
3
=2

而A、B非零,由此解得A=
3
,B=1

f(x)=
3
sinπx+cosπx
,即f(x)=2sin(πx+
π
6
)

(2)由(1)知:f(x)=2sin(πx+
π
6
)

f(x+
1
6
)=2sin(πx+
π
3
)

2kπ-
π
2
≤πx+
π
3
≤2kπ+
π
2
(k∈Z)
 
得:2k-
5
6
≤x≤2k+
1
6
(k∈Z)

f(x+
1
6
)
的單調遞增區間為[2k-
5
6
,2k+
1
6
](k∈Z)

f(x+
1
6
)=2sin(πx+
π
3
)
的圖象可由y=2sinx,x∈R的圖象先向左平移
π
3
個單位,再將所得圖象上所有點的橫坐標縮短到原來的
1
π
倍而縱坐標不變得到.
(3)∵f(x)=2sin(πx+
π
6
)

x∈[
21
4
23
4
]
,有πx+
π
6
∈[
65π
12
71π
12
]

πx+
π
6
=
11π
2
,即x=
16
3
時,f(x)取得最大值,
∴其對稱軸方程為x=
16
3
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩精品视频免费 | 69黄在线看片免费视频 | 国产精品免费一区二区三区四区 | 久久婷婷麻豆国产91天堂 | 久免费视频 | 国产一在线 | 精品久久久久久久 | 久草色视频在线观看 | 污网站在线看 | 国产免费视频 | 久久精品免费一区二区三区 | 久久久精品日本 | 国产精品18 | av在线大全| 午夜电影网址 | 亚洲精品在线免费 | 黄色影片网址 | 亚洲精选久久 | 久久精品免费视频观看 | 91精品国产九九九久久久亚洲 | 狠狠艹视频 | 激情一区二区 | 黄色电影在线免费看 | 暖暖日本在线视频 | 看毛片网站| 日本久久精品视频 | 日韩成人免费av | 欧美xxxx色视频在线观看免费 | 一区二区三区回区在观看免费视频 | 最新日韩精品在线观看 | 亚洲高清视频一区二区三区 | 亚洲女人天堂 | 国产成人免费视频网站高清观看视频 | 亚洲欧美在线观看 | 久久免费精品 | 日韩在线成人 | 日韩中文在线视频 | 欧美视频网站 | 天堂精品 | 欧美精产国品一二三区 | 欧美一区二区三区在线视频 |