【題目】已知四棱錐中,
底面
,
,
,
,
.
(1)當變化時,點
到平面
的距離是否為定值?若是,請求出該定值;若不是,請說明理由;
(2)當直線與平面
所成的角為45°時,求二面角
的余弦值.
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,離心率為
,
是橢圓
上的一個動點,且
面積的最大值為
.
(1)求橢圓的方程;
(2)設直線斜率為
,且
與橢圓
的另一個交點為
,是否存在點
,使得
若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
是橢圓
上兩點,
是坐標原點,且
,
,離心率為
.
(1)求橢圓的方程;
(2)過作兩條相互垂直的直線
分別交橢圓于
和
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的左頂點
,且點
在橢圓上,
分別是橢圓的左、右焦點。過點
作斜率為
的直線交橢圓
于另一點
,直線
交橢圓
于點
.
(1)求橢圓的標準方程;
(2)若為等腰三角形,求點
的坐標;
(3)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸,以相同的長度單位建立極坐標系.己知直線的直角坐標方程為
,曲線C的極坐標方程為
.
(1)設t為參數,若,求直線
的參數方程和曲線C的直角坐標方程;
(2)已知:直線與曲線C交于A,B兩點,設
,且
,
,
依次成等比數列,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】時值金秋十月,正是秋高氣爽,陽光明媚的美好時刻。復興中學一年一度的校運會正在密鑼緊鼓地籌備中,同學們也在熱切地期盼著,都想為校運會出一份力。小智同學則通過對學校有關部門的走訪,隨機地統計了過去許多年中的五個年份的校運會“參與”人數及相關數據,并進行分析,希望能為運動會組織者科學地安排提供參考。
附:①過去許多年來學校的學生數基本上穩定在3500人左右;②“參與”人數是指運動員和志愿者,其余同學均為“啦啦隊員”,不計入其中;③用數字1、2、3、4、5表示小智同學統計的五個年份的年份數,今年的年份數是6;
統計表(一)
年份數x | 1 | 2 | 3 | 4 | 5 |
“參與”人數(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
統計表(二)
高一(3)(4)班參加羽毛球比賽的情況:
男生 | 女生 | 小計 | |
參加(人數) | 26 | b | 50 |
不參加(人數) | c | 20 | |
小計 | 44 | 100 |
(1)請你與小智同學一起根據統計表(一)所給的數據,求出“參與”人數y關于年份數x的線性回歸方程,并預估今年的校運會的“參與”人數;
(2)學校命名“參與”人數占總人數的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運會的“參與”人數是互不影響的,且假定小智同學對今年校運會的“參與”人數的預估是正確的,并以這6個年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率。現從過去許多年中隨機抽取9年來研究,記這9年中“體活躍年”的個數為隨機變量,試求隨機變量
的分布列、期望
和方差
;
(3)根據統計表(二),請問:你能否有超過60%的把握認為“羽毛球運動”與“性別”有關?
參考公式和數據一:,
,
,
參考公式二:,其中
.
參考數據:
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com