過橢圓的左頂點
作斜率為2的直線,與橢圓的另一個交點為
,與
軸的交點為
,已知
.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點
,且與直線
相交于點
,若
軸上存在一定點
,使得
,求橢圓的方程.
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓經(jīng)過點
,離心率
,直線
的方程為
.
(1)求橢圓的方程;
(2)是經(jīng)過右焦點
的任一弦(不經(jīng)過點
),設(shè)直線
與直線
相交于點
,記
的斜率分別為
.問:是否存在常數(shù)
,使得
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,拋物線E:y2=4x的焦點為F,準線l與x軸的交點為A.點C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準線l交于不同的兩點M,N.
(1)若點C的縱坐標為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
我們把離心率為e=的雙曲線(a>0,b>0)稱為黃金雙曲線.如圖,
是雙曲線的實軸頂點,
是虛軸的頂點,
是左右焦點,
在雙曲線上且過右焦點
,并且
軸,給出以下幾個說法:
①雙曲線x2-=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是( )
A.①②④ | B.①②③ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF|·|BF|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為和
,且|
|=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線
與橢圓C相交于A,B兩點,若
A
B的面積為
,求以
為圓心且與直線
相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知E(2,2)是拋物線C:y2=2px上一點,經(jīng)過點(2,0)的直線l與拋物線C交于A,B兩點(不同于點E),直線EA,EB分別交直線x=-2于點M,N.
(1)求拋物線方程及其焦點坐標;
(2)已知O為原點,求證:∠MON為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點與點M(x,y)的距離的最小值為m,點F(0,1)與點M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點B(x1,y1),使得過點B的切線與兩坐標軸圍成的三角形的面積等于.若存在,請求出點B的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動圓過定點(1,0),且與直線
相切.
(1)求動圓圓心的軌跡方程;
(2)設(shè)是軌跡
上異于原點
的兩個不同點,直線
和
的傾斜角分別為
和
,①當
時,求證直線
恒過一定點
;
②若為定值
,直線
是否仍恒過一定點,若存在,試求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com