(本題滿分12分)
如圖,橢圓長軸端點為,
為橢圓中心,
為橢圓的右焦點,
且,
.
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為,直線
交橢圓于
兩點,問:是否存在直線
,使點
恰為
的垂心?若存在,求出直線
的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
在直角坐標系中,以O為極點,
軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為
,曲線
的參數方程為
,(
為參數,
)。
(Ⅰ)求C1的直角坐標方程;
(Ⅱ)當C1與C2有兩個公共點時,求實數的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分,(Ⅰ)小問3分,(Ⅱ)小問9分.)
直線稱為橢圓
的“特征直線”,若橢圓的離心率
.(1)求橢圓的“特征直線”方程;
(2)過橢圓C上一點作圓
的切線,切點為P、Q,直線PQ與橢圓的“特征直線”相交于點E、F,O為坐標原點,若
取值范圍恰為
,求橢圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓M的中心為坐標原點,且焦點在x軸上,若M的一個頂點恰好是拋物線的焦點,M的離心率
,過M的右焦點F作不與坐標軸垂直的直線
,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設點N(t,0)是一個動點,且,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標系中,已知三點
,
,
,曲線C上任意—點
滿足:
.
(l)求曲線C的方程;
(2)設點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為,
.試探究
的值是否與點P及直線L有關,并證明你的結論;
(3)設曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運動.若當點P的坐標為(0,2)時,取得最小值,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知點為拋物線
:
的焦點,
為拋物線
上的點,且
.
(Ⅰ)求拋物線的方程和點
的坐標;
(Ⅱ)過點引出斜率分別為
的兩直線
,
與拋物線
的另一交點為
,
與拋物線
的另一交點為
,記直線
的斜率為
.
(ⅰ)若,試求
的值;
(ⅱ)證明:為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知,
,O為坐標原點,動點E滿足:
(Ⅰ) 求點E的軌跡C的方程;
(Ⅱ)過曲線C上的動點P向圓O:引兩條切線PA、PB,切點分別為A、B,直線AB與x軸、y軸分別交于M、N兩點,求ΔMON面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com