(本小題滿分10分)
某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2(注:利潤與投資單位是萬元)
(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?
(1)y=0.25x及y=1.25;
(2)對A、B兩種產(chǎn)品分別投資3.75萬元、6.25萬元時,企業(yè)可獲得最大利潤萬元.
【解析】(1)設出它們的函數(shù)關系式y(tǒng)=k1x, y=k2,由0.25=k1x1得:k1=0.25,
y=k2
,由2.5=k2
得k2=1.25.
(2) 設投入A產(chǎn)品x萬元,則投入B產(chǎn)品為10-x萬元,企業(yè)獲得的利潤為y=0.25x+1.25,得到了y關于x的函數(shù)關系式,為了方便求最值,利用換元的方法令
=t(0≤t≤10),
則y=[-(t-
)2+
],這樣就轉(zhuǎn)化為二次函數(shù)求最值問題.
解:(1)設y=k1x,由0.25=k1x1得:k1=0.25
設y=k2,由2.5=k2
得k2=1.25
∴所求函數(shù)為y=0.25x及y=1.25……………………………………4分
(2)設投入A產(chǎn)品x萬元,則投入B產(chǎn)品為10-x萬元,企業(yè)獲得的利潤為y=0.25x+1.25……………………………………6分
令=t(0≤t≤10)則
y=(10-t2)+
t=
(-t2+5t+10)
=[-(t-
)2+
]……………………………………8分
當t=時,y取得最大值
萬元,此時x=3.75萬元
故對A、B兩種產(chǎn)品分別投資3.75萬元、6.25萬元時,企業(yè)可獲得最大利潤萬元.
……10分
科目:高中數(shù)學 來源: 題型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com