【題目】已知拋物線的焦點為
,雙曲線
的右焦點為
,過點
的直線與拋物線在第一象限的交點為
,且拋物線在點
處的切線與直線
垂直,則
的最大值為( )
A. B.
C.
D. 2
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
的極值;
(2)設函數在
處的切線方程為
,若函數
是
上的單調增函數,求
的值;
(3)是否存在一條直線與函數的圖象相切于兩個不同的點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,且直線
經過曲線
的左焦點
.
(1)求的值及直線
的普通方程;
(2)設曲線的內接矩形的周長為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地舉辦水果觀光采摘節,并推出配套旅游項目,統計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖.
(1)若將消費金額不低于80元的游客稱為“水果達人”,現用分層抽樣的方法從樣本的“水果達人”中抽取5人,求這5人中消費金額不低于100元的人數;
(2)從(1)中的5人中抽取2人作為幸運客戶免費參加配套旅游項目,請列出所有的可能結果,并求這2人中至少有1人購買金額不低于100元的概率;
(3)為吸引顧客,該地特推出兩種促銷方案,
方案一:每滿80元可立減8元;
方案二:金額超過50元但又不超過80元的部分打9折,金額超過80元但又不超過100元的部分打8折,金額超過100元的部分打7折.
若水果的價格為11元/千克,某游客要購買10千克,應該選擇哪種方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周髀算經》 是我國古代的天文學和數學著作。其中一個問題的大意為:一年有二十四個節氣(如圖),每個節氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節氣的晷長為( )
A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,且
,
,
三點中恰有兩點在拋物線
上,另一點是拋物線
的焦點.
(1)求證:、
、
三點共線;
(2)若直線過拋物線
的焦點且與拋物線
交于
、
兩點,點
到
軸的距離為
,點
到
軸的距離為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著互聯網的快速發展,基于互聯網的共享單車應運而生,某市場研究人員為了了解共享單車運營公司的經營狀況,對該公司最近六個月的市場占有率進行了統計,并繪制了相應的折線圖:
(1)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼
之間的關系,求
關于
的線性回歸方程,并
預測公司2017年4月的市場占有率;
(2)為進一步擴大市場,公司擬再采購一批單車,現有采購成本分別為元/輛和1200元/輛的
、
兩款車型可供選擇,按規定每輛單車最
多使用4年,但由于多種原因(如騎行頻率等)會導致單車使用壽命各不相同,考慮到公司運營的經濟效益,該公司決定先對這兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命的頻數表如右表:經測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
參考公式:回歸直線方程為,其中
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com