日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=x2,g(x)=alnx+bx(a>0)
(1)若f(1)=g(1),f′(1)=g′(1),求g(x)的解析式;
(2)在(1)的結論下,是否存在實常數k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值.若不存在,說明理由.
(3)設G(x)=f(x)+2-g(x)有兩個零點x1和x2,且x1,x0x2成等差數列,試探究值G′(x0)的符號.
分析:(1)比較簡單,只要利用條件f(1)=g(1),f′(1)=g′(1),即可求出a、b的值.
(2)通過畫圖象,可以知道f(x)與g(x)有一個公共點(1,1),而函數f(x)=x2在點(1,1)的切線方程為y=2x-1,只要驗證 f(x)≥2x-1,g(x)≤2x-1  都成立即可.
(3)由G(x)=f(x)+2-g(x)有兩個零點x1和x2,得到x1,x2滿足的關系式,再由x1,x0x2成等差數列,可得x0用x1、x2表示的關系式,再經過討論換元可證得G′(x0)>0.
解答:解:(1)由f(1)=g(1),得 b=1.
∵f′(x)=2x,g(x)=
a
x
+b
,f′(1)=g′(1)
∴2=a+b,聯立
b=1
a+b=2
,解得a=b=1,
則g(x)=lnx+x.
(2)因f(x)與g(x)有一個公共點(1,1),而函數f(x)=x2在點(1,1)的切線方程為y=2x-1,
下面驗證 f(x)≥2x-1,g(x)≤2x-1  都成立即可.
由x2-2x+1≥0,得x2≥2x-1,知f(x)≥2x-1恒成立.
設h(x)=lnx+x-(2x-1),即h(x)=lnx-x+1,h(x)=
1
x
-1=
1-x
x
,∴當0<x<1時,h′(x)>0;當x>1時,h′(x)<0.
∴h(x)在(0,1)上遞增,在(1,+∞)上遞減,∴h(x)在x=1時取得最大值,
∴h(x)=lnx+x-(2x-1)的最大值為h(1)=0,所以lnx+x≤2x-1恒成立.
故存在這樣的k和m,且k=2,m=-1,滿足條件.
(3)G′(x0)的符號為正,理由為:
∵G(x)=x2+2-alnx-bx有兩個不同的零點x1,x2
則有
x
2
1
+2-alnx1-bx1=0
x
2
2
+2-alnx2-bx2=0
,兩式相減得x22-x12-a(lnx2-lnx1)-b(x2-x1)=0.
即x1+x2-b=
a(lnx2-lnx1)
x2-x1
,又x1+x2=2x0
則G′(x0)=2x0-
a
x0
-b=(x1+x2-b)-
2a
x1+x2
=
a(lnx2-lnx1)
x2-x1
-
2a
x1+x2
=
a
x2-x1
[ln
x2
x1
-
2(x2-x1)
x2+x1
]

=
a
x2-x1
[ln
x2
x1
-
2(
x2
x1
-1)
1+
x2
x1
]

①當0<x1<x2時,令
x2
x1
=t,則t>1,且G′(x0)=
a
x2-x1
[lnt-
2(t-1)
1+t
],
故μ(t)=lnt-
2(t-1)
1+t
(t>1),μ′(t)=
1
t
-
4
(1+t)2
=
(1-t)2
t(1+t)2
>0,則μ(t)在[1,+∞)上為增函數,
而μ(1)=0,∴μ(t)>0,即lnt-
2(t-1)
1+t
>0,又a>0,x2-x1>0,∴G′(x0)>0,
②當0<x2<x1時,同理可得:G′(x0)>0,
綜上所述:G′(x0)值的符號為正.
點評:本題考查了導數的綜合應用,熟練利用導數求極值和最值及恰當分類討論、換元是解決問題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數f(x)的奇偶性;
(2)求函數f(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數m的值;
(2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數解,求實數a的取值范圍;
(3)是否存在實數m,使函數f(x)和函數h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內既有極大值又有極小值,求實數a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 青青草97 | 蜜桃视频网站在线观看 | 91亚洲日本aⅴ精品一区二区 | 精品久久久久久亚洲精品 | 色偷偷噜噜噜亚洲男人的天堂 | 成人激情在线 | 五月婷婷之综合激情 | 一级毛片免费视频 | 97在线视频免费 | 一区二区三区国产 | 国产乱人伦av在线a 日韩电影中文字幕 | www.一区二区 | 国产婷婷精品 | 国产精品一区二区在线观看免费 | 国产一区二区三区在线 | 亚洲精品久久久一区二区三区 | 国产精品美女久久久 | 伊人激情四射 | 国产伦精品一区二区三区电影 | 精品国产欧美 | 国产高清精品一区二区三区 | 欧美日韩视频在线观看一区 | 久热精品在线 | 国产精品久久久久久中文字 | 美女黄网站视频免费 | 狠狠骚| 久久国产精品久久 | 91精品国产91综合久久蜜臀 | 久久国产成人午夜av影院宅 | 精品国产一区二区三区在线观看 | 国产精品视频久久 | 日本黄色电影网 | 国产成人精品一区二 | www.99久久久 | 天天想天天干 | 国产精品久久久久aaaa九色 | 国产精品一区二区在线免费观看 | 日本不卡在线观看 | 国产精品18hdxxxⅹ在线 | 久久成人国产 | 日韩美香港a一级毛片免费 欧美一极视频 |