日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知函數(shù)f(x)=x3-(a+b)x2+abx,(0<a<b).
(Ⅰ)若函數(shù)f(x)在點(diǎn)(1,0)處的切線的傾斜角為,求a,b的值;
(Ⅱ)在(Ⅰ)的條件下,求f(x)在區(qū)間[0,3]上的最值.
【答案】分析:(I)先求出函數(shù)f(x)的導(dǎo)函數(shù),然后根據(jù)函數(shù)f(x)在點(diǎn)(1,0)處的切線的斜率等于-1,建立關(guān)于a和b的方程組,解之即可;
(II)先求出f′(x)=0的值,再討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來(lái)確定極值點(diǎn),通過(guò)比較極值與端點(diǎn)的大小從而確定出最值.
解答:解:(Ⅰ)f′(x)=3x2-2(a+b)x+ab,
由條件得,即
解得a=1,b=2或a=2,b=1,因?yàn)閍<b,所以a=1,b=2.
(Ⅱ)由(Ⅰ)知f(x)=x3-3x2+2x,f′(x)=3x2-6x+2,
令f'(x)=3x2-6x+2=0,解得
在區(qū)間[0,3]上,x,f′(x),f(x)的變化情況如下:

所以f(x)max=6;f(x)min=
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,導(dǎo)數(shù)高考新增內(nèi)容,是常考的知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 精品久久久久久 | 99视频精品| 青青草福利视频 | 国产日本在线 | 天天干天天操天天射 | 亚洲精品不卡 | 亚洲伊人色 | av四虎| 欧美成人精品一区二区三区在线看 | 国产区视频 | 国产成人精品av在线观 | 中文毛片| 亚欧洲精品在线视频免费观看 | 国产在线中文字幕 | 亚洲日本欧美 | 日本中文字幕视频 | 成人免费视频一区二区 | 久草视频在线播放 | 久久久久久久综合 | 国产综合亚洲精品一区二 | 久久久中文字幕 | 亚洲亚洲人成综合网络 | 婷婷色在线 | 视频一二三区 | 在线欧美 | 日韩精品三区 | 久久精品播放 | 一区二区三区在线看 | 欧美一级片网站 | 日韩国产精品一区二区 | 欧美日韩亚洲一区二区三区 | 中文字幕免费在线观看 | 免费a视频| 天天操女人 | 国产三级在线观看 | 色77777| 水蜜桃一区二区 | 久久a视频 | 欧美日韩精品一区二区 | 亚州精品视频 | 三级在线视频 |