日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

【答案】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD
結(jié)合AB⊥AD,可得
分別以AB、AD、AP為x軸、y軸、z軸,建立空間直角坐標(biāo)系o﹣xyz,如圖所示
可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),
P(0,0,λ) (λ>0)


∴DE⊥AC且DE⊥AP,
∵AC、AP是平面PAC內(nèi)的相交直線,∴ED⊥平面PAC.
∵ED平面PED∴平面PED⊥平面PAC
(Ⅱ)由(Ⅰ)得平面PAC的一個法向量是 ,

設(shè)直線PE與平面PAC所成的角為θ,
,解之得λ=±2
∵λ>0,∴λ=2,可得P的坐標(biāo)為(0,0,2)
設(shè)平面PCD的一個法向量為 =(x0 , y0 , z0), ,
,得到 ,
令x0=1,可得y0=z0=﹣1,得 =(1,﹣1,﹣1)
∴cos<
由圖形可得二面角A﹣PC﹣D的平面角是銳角,
∴二面角A﹣PC﹣D的平面角的余弦值為

【解析】(I)由面面垂直的性質(zhì)定理證出PA⊥平面ABCD,從而得到AB、AD、AP兩兩垂直,因此以AB、AD、AP為x軸、y軸、z軸,建立坐標(biāo)系o﹣xyz,得A、D、E、C、P的坐標(biāo),進(jìn)而得到 的坐標(biāo).由數(shù)量積的坐標(biāo)運(yùn)算公式算出 ,從而證出DE⊥AC且DE⊥AP,結(jié)合線面垂直判定定理證出ED⊥平面PAC,從而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一個法向量是 ,算出 、 夾角的余弦,即可得到直線PE與平面PAC所成的角θ的正弦值,由此建立關(guān)于θ的方程并解之即可得到λ=2.利用垂直向量數(shù)量積為零的方法,建立方程組算出 =(1,﹣1,﹣1)是平面平面PCD的一個法向量,結(jié)合平面PAC的法向量 ,算出 、 的夾角余弦,再結(jié)合圖形加以觀察即可得到二面角A﹣PC﹣D的平面角的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=-x3x2+(m2-1)x(xR),其中m>0.

(1)當(dāng)m=1,求曲線yf(x)在點(1,f(1))處的切線斜率;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 若a1=1,且Sn=tan ,其中n∈N*.
(1)求實數(shù)t的值和數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=log3a2n , 求數(shù)列{ }的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx+cosωx+c(ω>0,x∈R,c是常數(shù))圖象上的一個最高點為( ,1),與其相鄰的最低點是( ,﹣3).
(1)求函數(shù)f(x)的解析式及其對稱中心;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,且 =﹣ ac,試求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(λ+2,λ2 cos2α), =(m, +sinαcosα),其中λ,m,α為實數(shù).
(1)若α= ,求| |的最小值;
(2)若 =2 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為,求過的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b,c均為實數(shù),且,,,

試用反證法證明:abc中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為[﹣1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:

x

﹣1

0

4

5

f(x)

1

2

2

1

(1)函數(shù)y=f(x)是周期函數(shù);
(2)函數(shù)f(x)在(0,2)上是減函數(shù);
(3)如果當(dāng)x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為4;
(4)當(dāng)1<a<2時,函數(shù)y=f(x)﹣a有4個零點.
其中真命題的個數(shù)有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 其中P,M是非空數(shù)集,且P∩M=,設(shè)f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);
(II)是否存在實數(shù)a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(M)=[﹣3,2a﹣3]?若存在,請求出滿足條件的實數(shù)a;若不存在,請說明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調(diào)遞增函數(shù),求集合P,M.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 丁香婷婷久久久综合精品国产 | 欧美精品成人一区二区三区四区 | 久久久免费 | 国产精品夜夜春夜夜爽久久电影 | 成人精品一区 | 亚洲成人aaa | 国产欧美综合一区二区三区 | a免费在线观看 | 天天射影院 | 久久天天躁狠狠躁夜夜躁2014 | 欧美一区免费 | 日韩在线一区二区 | 91大神免费在线观看 | 久久婷婷香蕉 | 成人欧美一区二区三区色青冈 | 久久国产精品久久久久久电车 | 免费看国产片在线观看 | 精品中文字幕一区二区三区 | 久久国产精品久久 | 男人天堂a | 中文字幕免费在线 | 国产成人久久精品麻豆二区 | 一区二区欧美日韩 | 国产成人精品久久 | 欧美一级在线 | 毛片免费看 | 黄色大片在线 | 一级免费片| 综合亚洲色图 | 久久综合99re88久久爱 | 欧美亚洲成人一区 | 国产精品久久久久久久久 | 能看毛片的网址 | 国产理论一区 | 99在线视频观看 | 成人a视频在线观看 | 国产一级在线 | 欧美日韩精品在线观看 | 婷婷毛片 | 99福利视频 | 久久青青|