設(shè)橢圓C∶(a>0)的兩個(gè)焦點(diǎn)是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點(diǎn).
(1)求a的取值范圍;
(2)(理)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;
(文)如果橢圓的兩個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)恰好是正方形的四個(gè)頂點(diǎn),求橢圓的方程;
(3)(理)對(duì)(2)中的橢圓C,直線l∶y=kx+m(k≠0)與C交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過(guò)點(diǎn)A(0,-1),求實(shí)數(shù)m的取值范圍.
(文)過(guò)(2)中橢圓右焦點(diǎn)F2且不與坐標(biāo)軸垂直的直線l交橢圓于M、N兩點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo)的取值范圍.
(1)由已知, ∴方程組 故 (2)(理)設(shè)橢圓上的點(diǎn) 則 ∵ 于是, ∴所求橢圓方程為 (直接給出 (2)(文)由已知可得 所以所求橢圓方程是 (3)(理)由 ∵直線 ①設(shè) ∴ 又∵線段 即 ②由①,②得 ∴實(shí)數(shù) (3)(文) 設(shè) ∴線段 在上式中令 ∴ |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在直角坐標(biāo)系xOy中,設(shè)橢圓C:(a>b>0)的左、右兩個(gè)焦點(diǎn)分別為F1、F2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線l與橢圓C相交,其中一個(gè)交點(diǎn)為M(
,1).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),直線BF2交橢圓C于另一點(diǎn)N,求△F1BN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省高三高考極限壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)橢圓C:(“a>b〉0)的左焦點(diǎn)為
,橢圓過(guò)點(diǎn)P(
)
(1)求橢圓C的方程;
(2)已知點(diǎn)D(1, 0),直線l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
設(shè)橢圓C:(a〉b>0)的左焦點(diǎn)為
,橢圓過(guò)點(diǎn)P(
)
(1)求橢圓C的方程;
(2)已知點(diǎn)D(l,0),直線l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:吉林一中2009-2010學(xué)年上學(xué)期期末高二(數(shù)學(xué))試題 題型:解答題
在直角坐標(biāo)系xOy中,設(shè)橢圓C:(a>b>0)的左、右兩個(gè)焦點(diǎn)分別為F1、F2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線l與橢圓C相交,其中一個(gè)交點(diǎn)為M(
,1).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),直線BF2交橢圓C于另一點(diǎn)N,求△F1BN的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com