【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>分(含
分)以上的3人與成績?yōu)?/span>
分(不含
分)以下的3836人,還有約1.9萬文科考生的成績集中在
內,其成績的頻率分布如下表所示:
分數(shù)段 | ||||
頻率 | 0.108 | 0.133 | 0.161 | 0.183 |
分數(shù)段 | ||||
頻率 | 0.193 | 0.154 | 0.061 | 0.007 |
(Ⅰ)試估計該次高考成績在內文科考生的平均分(精確到
);
(Ⅱ)一考生填報志愿后,得知另外有4名同分數(shù)考生也填報了該志愿.若該志愿計劃錄取3人,并在同分數(shù)考生中隨機錄取,求該考生不被該志愿錄取的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為
,過拋物線上一點
作拋物線
的切線
,
交
軸于點
.
(1)判斷的形狀;
(2) 若兩點在拋物線
上,點
滿足
,若拋物線
上存在異于
的點
,使得經過
三點的圓與拋物線在點
處的有相同的切線,求點
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,
,以
的中線
為折痕,將
沿
折起,如圖所示,構成二面角
,在面
內作
,且
.
(1)求證:∥平面
;
(2)如果二面角的大小為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】必修四第一章我們借助圓的對稱性學習了誘導公式,如在直觀上講單位圓中,當兩個角的終邊關于
軸對稱時,這兩個角的正弦值相等;再如
在單位圓中,當兩個角的終邊關于原點中心對稱時,這兩個角的正弦值互為相反數(shù).觀察這些誘導公式,可以發(fā)現(xiàn)它們都是特殊角與任意角
的三角函數(shù)的恒等關系.我們如果將特殊角換為任意角
,那么任意角
與
的和(或差)的三角函數(shù)與
,
的三角函數(shù)會有什么關系呢?如果已知
,
的正弦余弦,能由此推出
的正弦余弦嗎?下面是某高一學生在老師的指導下自行探究
與角
的正弦余弦之間的關系的部分過程,請你順著這位同學的思路以及老師的提示將探究過程完善,并完成后面的題目.探究過程如下:
不妨令如圖,設單位圓與
軸的正半軸相交于點
以
軸的非負半軸為始邊作角
它們的終邊分別與單位圓相交于點
連接
若把扇形
繞著點
旋轉
角,則點
分別與點
重合. ……(未完待續(xù))
(提示一:任意一個圓繞著其圓心旋轉任意角后都與原來的圓重合,這一性質叫做圓的旋轉對稱性)(提示二:平面上任意兩點間的距離公式
)
(1)完善上述探究過程;
(2)利用(1)中的結論解決問題:已知是第三象限角,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形中,
、
分別是
、
上的點,
,
,
是
的中點,現(xiàn)沿著
翻折,使平面
平面
.
(Ⅰ)為
的中點,求證:
平面
.
(Ⅱ)求異面直線與
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】返鄉(xiāng)創(chuàng)業(yè)的大學生一直是人們比較關注的對象,他們從大學畢業(yè),沒有選擇經濟發(fā)達的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻自己的力量,在享有“國際花園城市”稱號的溫江幸福田園,就有一個由大學畢業(yè)生創(chuàng)辦的農家院“小時代”,其獨特的裝修風格和經營模式,引來無數(shù)人的關注,帶來紅紅火火的現(xiàn)狀,給青年大學生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬元,經營后每年的總收入為50萬元,第n年需要付出房屋維護和工人工資等費用是首項為12,公差為4的等差數(shù)列(單位:萬元).
(1)求;
(2)該農家樂第幾年開始盈利?能盈利幾年?(即總收入減去成本及所有費用之差為正值)
(3)該農家樂經營多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利前
年總獲利
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】,
兩組各有7位病人,他們服用某種藥物后的康復時間(單位:天)記錄如下:
組:10,11,12,13,14,15,16
組:12,13,15,16,17,14,
假設所有病人的康復時間互相獨立,從,
兩組隨機各選1人,
組選出的人記為甲,
組選出的
人記為乙.
(Ⅰ)求甲的康復時間不少于14天的概率;
(Ⅱ)如果,求甲的康復時間比乙的康復時間長的概率;
(Ⅲ)當為何值時,
,
兩組病人康復時間的方差相等?(結論不要求證明)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com