分析 由向量垂直的條件:數量積為0,再由向量的數量積的坐標表示,解方程即可得到k的值.
解答 解:向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,0),$\overrightarrow{c}$=(3,2),
可得$\overrightarrow{a}$•$\overrightarrow{c}$=3+6=9,$\overrightarrow{b}$•$\overrightarrow{c}$=-2×3+0×2=-6,
向量$\overrightarrow{c}$與向量k$\overrightarrow{a}+\overrightarrow{b}$垂直,可得
$\overrightarrow{c}$•(k$\overrightarrow{a}+\overrightarrow{b}$)=0,
即為k$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$=0,
即有9k-6=0,
解得k=$\frac{6}{9}$=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.
點評 本題考查向量的數量積的坐標表示和向量垂直的條件:數量積為0,考查運算能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | [-2,2] | B. | [2,+∞) | C. | [0,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com