給定橢圓.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
(1) ; (2)
垂直.
解析試題分析:(1)由“橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
”知:
從而可得橢圓的標準方程和“準圓”的方程;
(2)分兩種情況討論:①當中有一條直線斜率不存在;②直線
斜率都存在.
對于①可直接求出直線的方程并判斷其是不互相垂直;
對于②設經過準圓上點與橢圓只有一個公共點的直線為
與橢圓方程聯立組成方程組消去
得到關于
的方程:
由化簡整理得:
而直線的斜率正是方程的兩個根
,從而
(1)橢圓方程為
準圓方程為
(2)①當中有一條無斜率時,不妨設
無斜率,
因為與橢圓只有一個共公點,則其方程為
當方程為
時,此時
與準圓交于點
此時經過點(或
)且與橢圓只有一個公共瞇的直線是
(或
)
即為
(或
),顯然直線
垂直;
同理可證方程為
時,直線
也垂直.
②當都有斜率時,設點
其中
設經過點與橢圓只有一個公共點的直線為
則由消去
,得
由化簡整理得:
因為,所以有
設的斜率分別為
,因為
與橢圓只有一個公共點
所以滿足上述方程
所以,即
垂直,
綜合①②知, 垂直.
考點:1、橢圓的標準方程;2、直線與圓錐曲線的綜合問題.
科目:高中數學 來源: 題型:解答題
(2014·武漢模擬)已知點P是圓M:x2+(y+m)2=8(m>0,m≠)上一動點,點N(0,m)是圓M所在平面內一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(1)當P在圓M上運動時,記動點Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標準方程.
(2)過原點斜率為k的直線交曲線Г于A,B兩點,其中A在第一象限,且它在x軸上的射影為點C,直線BC交曲線Г于另一點D,記直線AD的斜率為k′,是否存在m,使得對任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:的焦點在x軸上.
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設F1、F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內的點,直線F2P交y軸于點Q,并且F1P⊥F1Q.證明:當a變化時,點P在某定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點
,焦點在
軸上,離心率為
,右焦點到右頂點的距離為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓
交于
兩點,是否存在實數
,使
成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,離心率為的橢圓
上的點到其左焦點的距離的最大值為3,過橢圓
內一點
的兩條直線分別與橢圓交于點
、
和
、
,且滿足
,其中
為常數,過點
作
的平行線交橢圓于
、
兩點.
(1)求橢圓的方程;
(2)若點,求直線
的方程,并證明點
平分線段
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓左、右焦點分別為F1、F2,點P(2,
),點F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的斜率互為相反數,求證:直線l過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左右頂點分別為
,離心率
.
(1)求橢圓的方程;
(2)若點為曲線
:
上任一點(
點不同于
),直線
與直線
交于點
,
為線段
的中點,試判斷直線
與曲線
的位置關系,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com