【題目】某園林基地培育了一種新觀賞植物,經(jīng)過一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進(jìn)行統(tǒng)計,按照
的分組作出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在
的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的
的值;
(2)在選取的樣本中,從高度在厘米以上(含
厘米)的植株中隨機(jī)抽取
株,求所取的
株中至少有一株高度在
內(nèi)的概率.
【答案】(1);(2)
;
【解析】試題分析:(1)由莖葉圖可知中的樣本有
個,其頻率為
,由此可求出
,因為
有
個,其頻率為
,則
,根據(jù)頻率之和為
,可求出
;(2)根據(jù)(1)可知高度在
內(nèi)株數(shù)為
,高度在
內(nèi)的株數(shù)為
,列出所有情況共
種,符合的有
種,即可求出.理解題意后列舉出所有情況即可.
試題解析:(1)由題意可知, 樣本容量,
.
(2)由題意可知, 高度在內(nèi)株數(shù)為
,記這
株分別為
,高度在
內(nèi)的株數(shù)為
,記
株分別為
.抽取
株的所有情況有
種, 分別為
,
,
,
,其中
株的高度都不在
內(nèi)的情況有
種分別為
,
所抽取的
株中至少有一株高度在
內(nèi)的概率
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)與直角坐標(biāo)系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.曲線C1的極坐標(biāo)方程為ρ﹣2cosθ=0,曲線C1的參數(shù)方程為(t是參數(shù),m是常數(shù))
(Ⅰ)求C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)若C2與C1有兩個不同的公共點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義域為R的函數(shù)f(x)= ,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同的實數(shù)解xi(i=1,2,3,4,5),則f(x1+x2+x3+x4+x5+2)=( )
A.
B.
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題:
①雙曲線 ﹣x2=1的漸近線方程為y=±
x;
②命題P:x∈R+ , sinx+ ≥1是真命題;
③已知線性回歸方程為 =3+2x,當(dāng)變量x增加2個單位,其預(yù)報值平均增加4個單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(﹣1<ξ<0)=0.6;
則正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為
,過點
的直線
與橢圓交于
兩點.
(1)若直線的斜率為1, 且
,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(1)中橢圓的右頂點為,直線
的傾斜角為
,問
為何值時,
取得最大值,并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N* .
(1)求數(shù)列{an}的通項公式;
(2)Sn為{an}的前n項和,bn=S2n﹣Sn , 求bn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過空間任一點與兩條異面直線都垂直的直線有且只有一條
D. 過球面上任意兩點的大圓有且只有一個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為
,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com