【題目】某家庭記錄了未使用節(jié)水龍頭30天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭30天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
(一)未使用節(jié)水龍頭30天的日用水量頻數(shù)分布表
日用水量 | |||||
頻數(shù) | 2 | 3 | 8 | 12 | 5 |
(二)使用了節(jié)水龍頭30天的日用水量頻數(shù)分布表
日用水量 | |||||
頻數(shù) | 2 | 5 | 11 | 6 | 6 |
(1)估計(jì)該家庭使用了節(jié)水龍頭后,日用水量小于的概率;
(2)估計(jì)該家庭使用節(jié)水龍頭后,平均每天能節(jié)省多少水?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
【答案】(1)0.6.(2)
【解析】
(1)由頻率,
為事件A出現(xiàn)的次數(shù),
為試驗(yàn)次數(shù),
;
(2)分別算出兩種情況用水量的平均數(shù)作差即可.
(1)根據(jù)表格(二),估計(jì)該家庭使用了節(jié)水龍頭后,日用水量小于的頻數(shù)為
,
所以所求的概率約為,
即該家庭使用節(jié)水龍頭后日用水量小于的概率的估計(jì)值為0.6.
(2)該家庭未使用節(jié)水龍頭30天日用水量的平均數(shù)為
;
該家庭使用了節(jié)水龍頭后30天日用水量的平均數(shù)為
;
.
因此,使用節(jié)水龍頭后,平均每天能節(jié)省的水量估計(jì)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對數(shù)函數(shù)過定點(diǎn)
(其中
),函數(shù)
(其中
為
的導(dǎo)函數(shù),
,
為常數(shù))
(1)討論的單調(diào)性;
(2)若對有
恒成立,且
在
(
)處的導(dǎo)數(shù)相等,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是正項(xiàng)數(shù)列
的前
項(xiàng)和,
,
.
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),數(shù)列
的前
項(xiàng)和
,
①求證:;
②解關(guān)于的不等式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的圓心在直線
上,且圓
經(jīng)過點(diǎn)
和點(diǎn)
.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求經(jīng)過點(diǎn)且與圓
恰有1個(gè)公共點(diǎn)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點(diǎn)
且與
軸相切,點(diǎn)
關(guān)于圓心
的對稱點(diǎn)為
,點(diǎn)
的軌跡為
.
(1)求曲線的方程;
(2)一條直線經(jīng)過點(diǎn),且交曲線
于
、
兩點(diǎn),點(diǎn)
為直線
上的動點(diǎn).
①求證:不可能是鈍角;
②是否存在這樣的點(diǎn),使得
是正三角形?若存在,求點(diǎn)
的坐標(biāo):否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的坐標(biāo)方程為
,若直線
與曲線
相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)
、
于原點(diǎn)
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),過點(diǎn)
作
軸的垂線
交函數(shù)
圖象于點(diǎn)
,以
為切點(diǎn)作函數(shù)
圖象的切線交
軸于點(diǎn)
,再過
作
軸的垂線
交函數(shù)
圖象于點(diǎn)
,
,以此類推得點(diǎn)
,記
的橫坐標(biāo)為
,
.
(1)證明數(shù)列為等比數(shù)列并求出通項(xiàng)公式;
(2)設(shè)直線與函數(shù)
的圖象相交于點(diǎn)
,記
(其中
為坐標(biāo)原點(diǎn)),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的四棱錐中,四邊形
是等腰梯形,
,
,
平面
,
,
.
(1)求證:平面
;
(2)已知二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
.
(1)求不等式的解集;
(2)若關(guān)于的不等式
在實(shí)數(shù)范圍內(nèi)解集為空集,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com