已知拋物線的頂點在坐標原點,焦點
在
軸上,拋物線上的點
到
的距離為2,且
的橫坐標為1.直線
與拋物線交于
,
兩點.
(1)求拋物線的方程;
(2)當直線,
的傾斜角之和為
時,證明直線
過定點.
(1);(2)直線
恒過定點
,證明詳見解析.
解析試題分析:(1)設拋物線方程為,由拋物線的定義及
即可求得
的值;(2)先設點
,
,然后將直線方程與拋物線方程聯立消去
得
,根據二次方程根與系數的關系表示出
,設直線
,
的傾斜角分別為
,斜率分別為
,則
,進而根據正切的兩角和公式可知
,其中
,
,代入
求得
和
的關系式,此時使
有解的
有無數組,把直線方程整理得
,推斷出直線
過定點
.
試題解析:(1)設拋物線方程為
由拋物線的定義知,又
2分
所以,所以拋物線的方程為
4分
(2)設,
聯立,整理得
(依題意
)
,
6分
設直線,
的傾斜角分別為
,斜率分別為
,則
8分
其中,
,代入上式整理得
所以即
10分
直線的方程為
,整理得
所以直線過定點
12分.
考點:1.拋物線的定義與方程;2.直線與拋物線的綜合問題;3.二次方程根與系數的關系.
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)上任一點P到兩個焦點的距離的和為2
,P與橢圓長軸兩頂點連線的斜率之積為-
.設直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若=
(O為坐標原點),求|y1-y2|的值;
(2)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補角?若存在,求出點Q坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的左焦點為
,且過點
.
(1)求橢圓的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求
的值;
②若M、N分別為橢圓E的左、右頂點,證明:
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點,曲線C是使
為定值的點
的軌跡,曲線
過點
.
(1)求曲線的方程;
(2)直線過點
,且與曲線
交于
,當
的面積取得最大值時,求直線
的方程;
(3)設點是曲線
上除長軸端點外的任一點,連接
、
,設
的角平分線
交曲線
的長軸于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓與橢圓
中心在原點,焦點均在
軸上,且離心率相同.橢圓
的長軸長為
,且橢圓
的左準線
被橢圓
截得的線段
長為
,已知點
是橢圓
上的一個動點.
⑴求橢圓與橢圓
的方程;
⑵設點為橢圓
的左頂點,點
為橢圓
的下頂點,若直線
剛好平分
,求點
的坐標;
⑶若點在橢圓
上,點
滿足
,則直線
與直線
的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓的方程為 ,斜率為1的直線不經過原點
,而且與橢圓相交于
兩點,
為線段
的中點.
(1)問:直線與
能否垂直?若能,
之間滿足什么關系;若不能,說明理由;
(2)已知為
的中點,且
點在橢圓上.若
,求橢圓的離心率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)已知點和
,過點
的直線
與過點
的直線
相交于點
,設直線
的斜率為
,直線
的斜率為
,如果
,求點
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,
的外角平分線
與邊
的延長線相交于點
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知過點
的橢圓
:
的右焦點為
,過焦點
且與
軸不重合的直線與橢圓
交于
,
兩點,點
關于坐標原點的對稱點為
,直線
,
分別交橢圓
的右準線
于
,
兩點.
(1)求橢圓的標準方程;
(2)若點的坐標為
,試求直線
的方程;
(3)記,
兩點的縱坐標分別為
,
,試問
是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com