如圖,在直三棱柱
中,
、
分別為
、
的中點(diǎn)。
(I)證明:ED為異面直線與
的公垂線;
(II)設(shè)求二面角
的大小。
解法一:
(Ⅰ)設(shè)O為AC中點(diǎn),連結(jié)EO,BO,則EO又
,所以
,
EOBD為平行四邊行,ED∥OB。
∵AB=BC,∴RO⊥AC,
又平面ABC⊥平面ACC1A1,BO面ABC,故BO⊥平面ACC1A1,
∴ED⊥平面ACC1A1,ED⊥AC1、ED⊥CC1,
∴ED⊥BB1,ED為異面直線AC1與BB1的公垂線。
(Ⅱ)連結(jié)A1E,由AA1=AC=AB可知,A1ACC1為正方形,
∴A1E⊥AC1,又由ED⊥平面A1ACC1和ED平面ADC1知平面ADC1⊥平面A1ACC1,
∴A1E⊥平面ADC1,作EF⊥AD,垂足為F,連結(jié)A1F,則A1F⊥AD,∠A1FE為二面角的平面角。
不妨設(shè)AA1=2,
則AC=2,AB=,ED=OB=1,EF=
,
∴∠A1EF=60O。
所以二面角為60O。
解法二:
(Ⅰ)如圖,建立直角坐標(biāo)系O-xyz,其中原點(diǎn)O為AC的中點(diǎn)。
設(shè)A(a,0,0),B(0,b,0),B1(0,b,2c).
則
又
∴
所以ED是異面直線BB1與AC1的公垂線。
(Ⅱ)不妨設(shè)A(1,0,0)
則B(0,1,0),C(-1,0,0),A(1,0,2),
∴ BC⊥面A1AD.
又
∴ EC⊥面C1AD.
,即得
和
的夾角為600
所以二面角為60°。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直三棱柱中, AB=1,
,
∠ABC=60.
(1)證明:;
(2)求二面角A——B的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年天津市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分13分)如圖,在直三棱柱中,
,
分別為
的中點(diǎn),四邊形
是邊長(zhǎng)為
的正方形.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省高三2月月考理科數(shù)學(xué) 題型:解答題
如圖,在直三棱柱中,
,
,
是
的中點(diǎn).
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問(wèn)線段上是否存在點(diǎn)
,使
與
成
角?若存在,確定
點(diǎn)位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆云南省高二9月月考數(shù)學(xué)試卷 題型:解答題
如圖,在直三棱柱中,
,點(diǎn)
是
的中點(diǎn).
求證:(1);(2)
平面
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com