日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax3+cx+d(a≠0)是R上的奇函數,當x=1時f(x)取得極值-2.
(1)求f(x)的單調區間和極大值;
(2)證明對任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
【答案】分析:(1)由奇函數的定義利用待定系數法求得d,再由x=1時f(x)取得極值-2.解得a,c從而確定函數,再利用導數求單調區間和極大值.
(2)由(1)知,f(x)=x3-3x(x∈[-1,1])是減函數,從而確定|f(x1)-f(x2)|最小值,證明即可.
解答:解:(1)由奇函數的定義,應有f(-x)=-f(x),x∈R
即-ax3-cx+d=-ax3-cx-d∴d=0
因此,f(x)=ax3+cxf'(x)=3ax2+c
由條件f(1)=-2為f(x)的極值,必有f'(1)=0,故
解得a=1,c=-3
因此,f(x)=x3-3x,f'(x)=3x2-3=3(x+1)(x-1)f'(-1)=f'(1)=0
當x∈(-∞,-1)時,f'(x)>0,故f(x)在單調區間(-∞,-1)上是增函數
當x∈(-1,1)時,f'(x)<0,故f(x)在單調區間(-1,1)上是減函數
當x∈(1,+∞)時,f'(x)>0,故f(x)在單調區間(1,+∞)上是增函數
所以,f(x)在x=-1處取得極大值,極大值為f(-1)=2
(2)由(1)知,f(x)=x3-3x(x∈[-1,1])是減函數,
且f(x)在[-1,1]上的最大值M=f(-1)=2,f(x)在[-1,1]上的最小值m=f(1)=-2
所以,對任意的x1,x2∈(-1,1),恒有|f(x1)-f(x2)|<M-m=2-(-2)=4
點評:本小題主要考查函數的單調性及奇偶性,考查運用導數研究函數單調性及極值等基礎知識,考查綜合分析和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜在线观看视频 | 中文字幕日韩一区 | 一区二区三区久久久 | 最近中文字幕在线观看 | 国产激情一区二区三区 | 中文字幕在线免费看 | 视频一区二区三区在线观看 | 国产特级淫片免费看 | 亚洲精品一区二三区 | 亚洲在线观看视频 | 一区二区欧美日韩 | 一区二区在线看 | 亚洲激情在线观看 | 91国内精品| 亚洲午夜av| 青草国产 | av网站观看 | 亚洲国产小视频 | 成人在线一区二区 | 日韩一级在线 | 亚洲人天堂 | 国产福利一区二区三区 | 午夜精品久久久久久久99黑人 | 亚洲第一在线 | 国产精品视屏 | 手机av在线免费观看 | 国产一级特黄aaa大片 | 日韩中文字幕 | av免费网站 | 免费的黄网站 | 午夜色婷婷 | 亚洲视频在线观看一区 | www.草逼| 午夜欧美 | 国产精品美女久久 | 久久久一区二区三区 | 久草资源网 | 久久黄色影院 | 日本韩国欧美中文字幕 | 国产日韩欧美综合 | 精品福利在线 |