日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設函數(shù)f(x)=(x-a)2,g(x)=x,x∈R,a為實常數(shù).
(1)若a>0,設F(x)=
f(x)
g(x)
,x≠0,用函數(shù)單調性的定義證明:函數(shù)F(x)在區(qū)間[a,+∞)上是增函數(shù);
(2)設關于x的方程f(x)=|g(x)|在R上恰好有三個不相等的實數(shù)解,求a的值所組成的集合.
(1)F(x)=
x2-2ax+a2
x
=x+
a2
x
-2a
,任取x1,x2∈[a,+∞),且x1<x2
F(x2)-F(x1)=x2-x1+a2(
1
x2
-
1
x1
)=(x2-x1)•
x1x2-a2
x1x2
,…(3分)
因為 a>0,x1≥a,x2≥a且x1<x2,∴x2-x1>0,x1x2>a2,…(4分)
所以F(x2)-F(x1)>0,所以函數(shù)F(x)在區(qū)間[a,+∞)上是增函數(shù).…(6分)
(2)原方程為(x-a)2=|x|,
①當a=0時,原方程變?yōu)閤2=|x|,有-1,0,1三個解;…(8分)
②當a<0時,函數(shù)y=(x-a)2與y=|x|的圖象在x<0時有兩個交點,所以原方程在x<0時有兩個不相等的實數(shù)解,要使原方程在x>0時恰有一個解,當且僅當函數(shù)y=(x-a)2與y=|x|的圖象在x>0時有且僅有一個公共點,即方程(x-a)2=x的判別式等于0,即(2a+1)2-4a2=0,解得a=-
1
4
;…(10分)
③同理,當a>0時,原方程在x>0時有兩個不相等的實數(shù)解,要原方程在x<0時恰有一個解,當且僅當方程(x-a)2=-x的判別式等于0,即(2a-1)2-4a2=0,
解得a=
1
4
.…(12分)
綜上,a的值所組成的集合為{-
1
4
,0,
1
4
}
.…(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調研數(shù)學試卷(一)(解析版) 題型:解答題

設函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省蘇州市高考數(shù)學一模試卷(解析版) 題型:解答題

設函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美中文在线 | 日韩精品一区二区三区免费视频 | 欧美日韩二区三区 | 欧美一区二区三区视频 | 丁香久久| jjzz日本 | 欧美理论影院 | 性一交一乱一透一a级 | 久久一区| 二区在线视频 | 国内精品视频 | 激情五月婷婷综合 | 成人午夜在线 | 天天宗合网 | 在线色网站 | 四虎免费在线播放 | 三级欧美在线观看 | 国产中文一区 | 国产精品一区二区免费在线观看 | 久草资源在线 | 亚洲蜜桃精久久久久久久 | 免费在线日本 | 91精品视频一区 | 久久精品国产视频 | 亚洲一区二区三区 | 欧美日本一区视频免费 | 国产一区二区三区在线免费观看 | 国产精品伦理 | av超碰| 成年人视频在线免费观看 | 亚洲 精品 综合 精品 自拍 | 一区二区三区免费网站 | 青草免费 | 精品国产91乱码一区二区三区 | 天天操狠狠操 | 久久午夜精品影院一区 | 日韩高清一区 | 成人免费视频观看视频 | 欧美日韩一区二区视频在线观看 | 99riav国产一区二区三区 | 久草免费在线 |