平面直角坐標系和極坐標系
的原點與極點重合,
軸的正半軸與極軸重合,單位長度相同。已知曲線
的極坐標方程為
,曲線
的參數方程為
,射線
,
,
與曲線
交于極點
以外的三點A,B,C.
(1)求證:;
(2)當時,B,C兩點在曲線
上,求
與
的值。
科目:高中數學 來源: 題型:解答題
如圖,橢圓的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點為
,過坐標原點
的直線
與
相交于點
,直線
分別與
相交于點
。
(1)求、
的方程;
(2)求證:。
(3)記的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于
,設點
的軌跡為曲線
,直線
過點
且與曲線
交于
,
兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=
,
|PF2|= , PF1⊥F1F2.
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩定點E(-2,0),F(2,0),動點P滿足,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線與曲線C交于A、B兩點,點N滿足
(O為原點),求四邊形OANB面積的最大值,并求此時的直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的長軸長為,焦點是
,點
到直線
的距離為
,過點
且傾斜角為銳角的直線
與橢圓交于A、B兩點,使得|
=3|
.
(1)求橢圓的標準方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線與橢圓交于
,而與拋物線交于
兩點,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線與橢圓
相交于兩點
和
,
設為橢圓
上一點,且滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com