日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知.
(Ⅰ)寫出的最小正周期
(Ⅱ)求由,以及圍成的平面圖形的面積.

(Ⅰ);(Ⅱ).

解析試題分析:1.解答第(Ⅱ)問,首先要正確畫出示意圖.2.要注意的是,當(dāng)面積在軸上方的時候,定積分算出來是正數(shù);當(dāng)面積在軸下方的時候,定積分算出來是負(fù)數(shù).很多考生沒有注意到這一點而導(dǎo)致出錯:.3.充分運(yùn)用對稱性,否則就要計算三個定積分了.
試題解析:(Ⅰ)∵
,
.
的最小正周期為.
(Ⅱ)設(shè)由,以及圍成的平面圖形的面積為

.


.
∴由以及
圍成的平面圖形的面積為.

考點:考查三角函數(shù)的化簡計算、定積分的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)(其中).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當(dāng)時,函數(shù)上有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標(biāo)軸交點處的切線互相平行.
(1)求常數(shù)a的值;(2)若存在x使不等式>成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若在(0,)單調(diào)遞減,求a的最小值
(Ⅱ)若有兩個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處取得極值。
(Ⅰ)證明:
(Ⅱ)是否存在實數(shù),使得對任意?若存在,求的所有值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且在區(qū)間內(nèi)存在極值,求整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求的極值,并證明:若
(2)設(shè),且,證明:
,由上述結(jié)論猜想一個一般性結(jié)論(不需要證明);
(3)證明:若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù))
(Ⅰ)若曲線在點處的切線平行于軸,求的值;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)當(dāng)時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 最近最新中文字幕 | 国产一级毛片电影 | 一级一级国产片 | 亚洲a网 | 亚洲视频在线观看 | 日本aaaaaa | 久久精品二区亚洲w码 | 99国内精品久久久久久久 | 欧美精品一区二区在线观看 | 美女又黄又免费 | 综合久久综合久久 | 国产精品欧美一区二区三区 | 蜜臀精品久久久久久蜜臀 | 中文字幕亚洲精品 | 五月婷婷综合激情 | 国产精品国产三级国产aⅴ原创 | 午夜视频在线 | 制服 丝袜 综合 日韩 欧美 | 精品国产乱码久久久久久1区2区 | 亚洲精品一区二区网址 | 精品久久久久久亚洲综合网站 | 涩涩视频免费观看 | 欧美一区二区免费 | 国产aⅴ一区二区 | 欧美高清一级片 | 特级黄一级播放 | 小草av| 性少妇xxxx片 | 日本免费中文字幕 | 91在线观看网站 | 手机看片1 | 日韩中文字幕精品 | 欧美久久久久久 | 91在线综合| 日韩一区二区三区精品 | 精品影院 | 免费看91| 亚洲欧美日韩在线一区 | a在线看 | 欧美一区在线观看视频 | 国产免费一区二区三区 |