日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x|x-a|-2,a∈R
(1)當a=3時,解不等式f(x)<|x-2|;
(2)當x∈(0,2]時,不等式f(x)<1-
12
x2
恒成立,求實數a的取值范圍.
分析:(1)a=3時,f(x)<|x-2|?x|x-3|-2<|x-2|下面對x的取值進行分類討論,轉化為整式不等式,即可求得原不等式的解集;
(2)由于f(x)<1-
1
2
x2
?
3
2
x-
3
x
<a<
3
x
+
1
2
x
,在x∈(0,2]恒成立,令g(x)=
3
2
x-
3
x
h(x)=
3
x
+
1
2
x
,x∈(0,2]則只需g(x)max<a<h(x)min接下來利用研究函數g(x)的單調性即可求出實數a的取值范圍.
解答:解:(1)a=3時,f(x)<|x-2|?x|x-3|-2<|x-2|等價于
x<2
x (3-x)-2<2-x
2≤x<3
x (3-x)-2<x-2
x≥3
x (x-3)-2<x-2
(3分)
解得x<2或2<x<3或3≤x<4
即原不等式的解集為{x|x<2或2<x<4}(6分)
(2)f(x)<1-
1
2
x2?x|x-a| <3-
1
2
x2?|a-x| <
3
x
-
1
2
x
(7分)?
1
2
x-
3
x
<a-x<
3
x
-
1
2
x?
3
2
x-
3
x
<a<
3
x
+
1
2
x
,在x∈(0,2]恒成立 (9分)
g(x)=
3
2
x-
3
x
h(x)=
3
x
+
1
2
x
,x∈(0,2]
則只需g(x)max<a<h(x)min
g(x)=
3
2
x-
3
x
在(0,2]上單調遞增
g(x)max=g(2)=
3
2
(10分)
h(x)=
3
x
+
1
2
x
在(0,2]上是減函數
h(x)min=h(2)=
5
2
(11分)
∴實數a的取值范圍是(
3
2
,  
5
2
)(12分)
點評:本小題主要考查函數單調性的應用、函數恒成立問題、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久久久一区 | 草草影院在线观看 | 91视频免费看网站 | 男人日女人网站 | 亚洲欧美激情精品一区二区 | www.99日本精品片com | 五月激情婷婷六月 | 天堂在线免费视频 | 国产激情在线视频 | 亚洲国产情侣自拍 | 在线观看成人 | 欧洲国产伦久久久久久久 | 久久亚洲视频 | 日韩午夜激情 | 日本99精品 | 亚洲欧洲一区二区三区 | 国产一区2区 | 91社区影院| 色999视频 | 国产成人精品毛片 | 亚洲欧美中文日韩v在线观看 | 午夜视频黄 | 亚洲成人影院在线观看 | 久久久高清 | 激情三区 | 天天草天天插 | 99国产精品久久 | 国产视频亚洲精品 | 跪求黄色网址 | 黄色91 | 欧美黄视频在线观看 | 免费观看国产黄色 | 欧美日韩免费看 | 国产精品一区亚洲二区日本三区 | 欧美精品第十页 | 国产精品一区二区在线 | 亚洲精品久久久久久国产精华液 | 久久靠逼 | 国产高清无密码一区二区三区 | 成人一区二区三区在线观看 | 曰本少妇色xxxxx日本妇 |