【題目】下面給出的命題中:
(1)已知函數,則
;
(2)“”是“直線
與直線
互相垂直”的必要不充分條件;
(3)已知隨機變量服從正態分布
,且
,則
;
(4)已知圓,圓
,則這兩個圓恰有兩條公切線.
其中真命題的個數為
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】(1)由=sina,可得
=sin
=1,故(1)正確;
(2)直線(m+2)x+my+1=0與直線(m2)x+(m+2)y3=0互相垂直(m+2)(m2)+m(m+2)=0,
即m=2或m=1.
∴“m=2”是“直線(m+2)x+my+1=0與直線(m2)x+(m+2)y3=0互相垂直”的充分不必要條件,故(2)錯誤;
(3)隨機變量ξ服從正態分布,且P(2ξ0)=0.4,則P(ξ>2)=0.1,故(3)錯誤;
(4)圓化為(x+1)2+y2=1,圓
化為
=1,兩圓的圓心距d=1,小于兩半徑之和,兩圓相交,∴這兩個圓恰有兩條公切線,故(4)正確。
∴正確的命題是2個。
故選:B.
科目:高中數學 來源: 題型:
【題目】設函數f(x)的定義域為(-3,3),
滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(x-y),當x<0時,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判斷f(x)的單調性,并證明;
(3)若函數g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE= BB1 , C1F=
CC1 .
(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點,A1G與平面AEF交于H,且設 =
,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和是Sn , 若點An(n, )在函數f(x)=﹣x+c的圖象上運動,其中c是與x無關的常數,且a1=3(n∈N*).
(1)求數列{an}的通項公式;
(2)記bn=a ,求數列{bn}的前n項和Tn的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】菜農定期使用低害殺蟲農藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農藥,食用時需要用清水清洗干凈,下表是用清水 (單位:千克)清洗該蔬菜
千克后,蔬菜上殘留的農藥
(單位:微克)的統計表:
在坐標系中描出散點圖,并判斷變量與
的相關性;
(2)若用解析式作為蔬菜農藥殘量
與用水量
的回歸方程,令
,計算平均值
和
,完成以下表格(填在答題卡中),求出
與
的回歸方程.(
精確到0.1)
(3)對于某種殘留在蔬菜上的農藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請估計需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數據)(附:線性回歸方程計算公式:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某投資人欲將5百萬元獎金投入甲、乙兩種理財產品,根據銀行預測,甲、乙兩種理財產品的收益與投入獎金的關系式分別為
,其中
為常數且
.設對乙種產品投入獎金
百萬元,其中
.
(1)當時,如何進行投資才能使得總收益
最大;(總收益
)
(2)銀行為了吸儲,考慮到投資人的收益,無論投資人獎金如何分配,要使得總收益不低于,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公差不為0的等差數列中,已知
且
,其前
項和
的最大值為( )
A. 25 B. 26 C. 27 D. 28
【答案】B
【解析】設等差數列的公差為
,
∵,
∴,
整理得,
∵,
∴.
∴,
∴當時,
.
故最大,且
.選B.
點睛:求等差數列前n項和最值的常用方法:
①利用等差數列的單調性, 求出其正負轉折項,便可求得和的最值;
②將等差數列的前n項和 (A、B為常數)看作關于n的二次函數,根據二次函數的性質求最值.
【題型】單選題
【結束】
9
【題目】如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為( )
A. B.
C. 90 D. 81
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com