【題目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)討論f(x)的單調性;
(2)若m>0,g(x)=f(x)+ 存在兩個極值點x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范圍.
【答案】
(1)解:由已知得mx+1>0,f′(x)= ,
①若m>0時,由mx+1>0,得:x>﹣ ,恒有f′(x)>0,
∴f(x)在(﹣ ,+∞)遞增;
②若m<0,由mx+1>0,得:x<﹣ ,恒有f′(x)<0,
∴f(x)在(﹣∞,﹣ )遞減;
綜上,m>0時,f(x)在(﹣ ,+∞)遞增,
m<0時,f(x)在(﹣∞,﹣ )遞減
(2)解:g(x)=ln(mx+1)+ ﹣2,(m>0),
∴g′(x)= ,
令h(x)=mx2+4m﹣4,
m≥1時,h(x)≥0,g′(x)≥0,g(x)無極值點,
0<m<1時,令h(x)=0,得:x1=﹣2 或x2=2
,
由g(x)的定義域可知x>﹣ 且x≠﹣2,
∴﹣2 >﹣
且﹣2
≠﹣2,解得:m≠
,
∴x1,x2為g(x)的兩個極值點,
即x1=﹣2 ,x2=2
,
且x1+x2=0,x1x2= ,得:
g(x1)+g(x2)=ln(mx1+1)+ ﹣2+ln(mx2+1)+
﹣2
=ln(2m﹣1)2+ ﹣2,
令t=2m﹣1,F(t)=lnt2+ ﹣2,
時,﹣1<t<0,
∴F(t)=2ln(﹣t)+ ﹣2,
∴F′(t)= <0,
∴F(t)在(﹣1,0)遞減,F(t)<F(﹣1)<0,
即0<m< 時,g(x1)+g(x2)<0成立,符合題意;
② <m<1時,0<t<1,
∴F(t)=2lnt+ ﹣2,F′(t)=
<0,
∴F(t)在(0,1)遞減,F(t)>F(1)=0,
∴ <m<1時,g(x1)+g(x2)>0,不合題意,
綜上,m∈(0, )
【解析】(1)求出函數的導數,通過討論m的范圍,確定函數的單調性;(2)求出g(x)的導數,通過討論m的范圍,求出函數的單調區間,從而求出函數的最值,判斷是否符合題意,從而判斷出m的范圍即可.
【考點精析】掌握利用導數研究函數的單調性和函數的極值與導數是解答本題的根本,需要知道一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程(t為參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為:ρ=4cosθ.
(1)把直線l的參數方程化為極坐標方程,把曲線C的極坐標方程化為普通方程;
(2)求直線l與曲線C交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(1)求M;
(2)當x∈M∩N時,證明:x2f(x)+x[f(x)]2≤ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{xn}是各項均為正數的等比數列,且x1+x2=3,x3﹣x2=2.(12分)
(Ⅰ)求數列{xn}的通項公式;
(Ⅱ)如圖,在平面直角坐標系xOy中,依次連接點P1(x1 , 1),P2(x2 , 2)…Pn+1(xn+1 , n+1)得到折線P1 P2…Pn+1 , 求由該折線與直線y=0,x=x1 , x=xn+1所圍成的區域的面積Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一年級3個班有10名學生在全國英語能力大賽中獲獎,學生來源人數如表:
班別 | 高一(1)班 | 高一(2)班 | 高一(3)班 |
人數 | 3 | 6 | 1 |
若要求從10位同學中選出兩位同學介紹學習經驗,設其中來自高一(1)班的人數為ξ,求隨機變量ξ的分布列及數學期望E(ξ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內的產品為合格品,否則為不合格品.統計結果如下:
甲流水線樣本的頻數分布表
產品重量(克) | 頻數 |
[490,495) | 6 |
[495,500) | 8 |
[500,505) | 14 |
[505,510) | 8 |
[510,515] | 4 |
乙流水線樣本的頻率分布直方圖
(1)求甲流水線樣本合格的頻率;
(2)由以上統計數據完成下面2×2列聯表,并回答有多大的把握認為產品的包裝質量與兩條自動包裝流水線的選擇有關.
分類 | 甲流水線 | 乙流水線 | 總計 |
合格品 | |||
不合格品 | |||
總計 |
附:K2=.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com