【題目】已知二次函數(shù)對任意的
都有
,且
.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù).
①若存在實數(shù),
,使得
在區(qū)間
上為單調(diào)函數(shù),且
取值范圍也為
,求
的取值范圍;
②若函數(shù)的零點都是函數(shù)
的零點,求
的所有零點.
【答案】(1);(2)①
;②見詳解.
【解析】
(1)先設(shè)二次函數(shù)的解析式為
,根據(jù)題意列出系數(shù)對應(yīng)的方程組,求解,即可得出結(jié)果;
(2)①由(1)可得:,對稱軸
,由函數(shù)
在區(qū)間
上單調(diào),得到
或
,分別研究
和
兩種情況,結(jié)合題中條件,以及二次函數(shù)性質(zhì),即可得出結(jié)果;
②先設(shè)為
的零點,由題意得到
,即
,求出
或
,分別研究
和
兩種情況,即可得出結(jié)果.
(1)設(shè)二次函數(shù)的解析式為
,
則,
由得
恒成立,又
,
所以,所以
,所以
;
(2)①由(1)可得:,對稱軸
,
在區(qū)間
上單調(diào),
所以或
,
當
時,
在區(qū)間
上單調(diào)增,所以
,即
為
的兩個根,所以只要
有小于等于2兩個不相等的實根即可,
所以要滿足
,得
當
時,
在區(qū)間
上單調(diào)減,所以
,即
兩式相減得,因為
,所以
,
所以,
,得
;
綜上,的取值范圍為
②設(shè)為
的零點,則
,即
,得
或
,
當
時,
所以所有零點為
;
當
時,
由得
,
所以所有零點為
。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
,其離心率為
,以原點為圓心,橢圓的短軸長為直徑的圓被直線
截得的弦長等于
.
(1)求橢圓的方程;
(2)設(shè)為橢圓
的左頂點,過點
的直線
與橢圓的另一個交點為
,與
軸相交于點
,過原點與
平行的直線與橢圓相交于
兩點,問是否存在常數(shù)
,使
恒成立?若存在,求出
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓 的參數(shù)方程和直線
的直角坐標方程;
( Ⅱ ) 設(shè)直線 與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
【答案】(1);
.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設(shè)點
,代入向量
,利用三角函數(shù)的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數(shù)方程為
(
為參數(shù)).
直線的直角坐標方程為
.
(Ⅱ)由直線的方程
可得點
,點
.
設(shè)點,則
.
.
由(Ⅰ)知,則
.
因為,所以
.
【題型】解答題
【結(jié)束】
23
【題目】選修4-5:不等式選講
已知函數(shù),
.
(Ⅰ)若對于任意,
都滿足
,求
的值;
(Ⅱ)若存在,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是
,過點
的動直線
與橢圓相交于
兩點,當直線
與
軸平行時,直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點
的定點
,使得直線
變化時,總有
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在微信群中發(fā)了一個8元“拼手氣”紅包,被甲、乙、丙三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則甲領(lǐng)到的錢數(shù)不少于其他任何人的概率為
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),在以坐標原點為極點,
軸的正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(1)求的極坐標方程與
的直角坐標方程;
(2)設(shè)點的極坐標為
,
與
相交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中
是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量
的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com