日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(文科)如果A={x|x2-x=0,x∈R},B={x|x2+x=0,x∈R},那么A∩B=( )
A.0
B.∅
C.{0}
D.{-1,0,1}
【答案】分析:集合A與集合B的公共元素構成集合A∩B,由此利用A={x|x2-x=0,x∈R}={0,1},B={x|x2+x=0,x∈R}={0,-1},能求出A∩B.
解答:解:∵A={x|x2-x=0,x∈R}={0,1},
B={x|x2+x=0,x∈R}={0,-1},
∴A∩B={0}.
故選C.
點評:本題考查交集及其運算,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文科)如果A={x|x2-x=0,x∈R},B={x|x2+x=0,x∈R},那么A∩B=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

(文科)如果A={x|x2-x=0,x∈R},B={x|x2+x=0,x∈R},那么A∩B=


  1. A.
    0
  2. B.
  3. C.
    {0}
  4. D.
    {-1,0,1}

查看答案和解析>>

科目:高中數學 來源:2010年上海市靜安、楊浦、青浦、寶山區高考數學二模試卷(文理合卷)(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久精品 | 亚洲免费高清 | 成人中文视频 | 国产玖玖 | 特黄视频| 国产精品国产三级国产专业不 | 黄色的网站在线免费观看 | 久久99国产精品 | 亚洲欧美高清 | 三级黄网站 | 日韩视频欧美视频 | 日本不卡在线 | 午夜在线观看免费 | 久久久久久亚洲 | 久久久久中文 | 欧美日韩精品一区二区 | 欧美精品一区二区三区四区 | 免费在线黄色av | 在线va| 久久激情综合 | 91精品国产欧美一区二区 | 在线一区 | 色婷婷综合久久久中文字幕 | 亚洲毛片网站 | 久久9国产偷伦 | 成人精品视频99在线观看免费 | 国产婷婷精品av在线 | 国产综合精品一区二区三区 | 国产免费一区 | 亚洲一区二区三区精品视频 | 高清一区二区 | 99久久久免费视频 | 欧美三日本三级三级在线播放 | 精品久久久久一区二区三区 | 一区二区三区在线播放 | 成人在线一区二区 | 久久久久久久久久毛片 | 99精品国产高清一区二区麻豆 | 亚洲精品99久久久久中文字幕 | 一区二区三区国产视频 | 午夜寂寞影视 |