【題目】O為△ABC內一點,且2 ,
=t
,若B,O,D三點共線,則t的值為( )
A.
B.
C.
D.
【答案】B
【解析】解:以OB,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點E,E為BC的中點.∵2 ,∴
=﹣2
=
=2
,
∴點O是直線AE的中點.
∵B,O,D三點共線, =t
,∴點D是BO與AC的交點.
過點O作OM∥BC交AC于點M,則點M為AC的中點.
則OM= EC=
BC,
∴ =
,
∴ ,
∴AD= AM=
AC,
=t
,
∴t= .
故選:B.
以OB,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點E,E為BC的中點.2 ,可得
=﹣2
=
=2
,因此點O是直線AE的中點.可得B,O,D三點共線,
=t
,∴點D是BO與AC的交點.過點O作OM∥BC交AC于點M,點M為AC的中點.利用平行線的性質即可得出.
科目:高中數學 來源: 題型:
【題目】如圖所示,A,B,C是雙曲線 =1(a>0,b>0)上的三個點,AB經過原點O,AC經過右焦點F,若BF⊥AC且|BF|=|CF|,則該雙曲線的離心率是( )
A.
B.
C.
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=aexlnx+ ,曲線y=f(x)在點(1,f(1))處得切線方程為y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為[﹣1,5],部分對應值如表,f(x)的導函數y=f′(x)的圖象如圖所示,下列關于函數f(x)的命題:
x | ﹣1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
(1)函數y=f(x)是周期函數;
(2)函數f(x)在(0,2)上是減函數;
(3)如果當x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為4;
(4)當1<a<2時,函數y=f(x)﹣a有4個零點.
其中真命題的個數有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內,且AB與投影面α所成角為θ(30°≤θ≤60°),設正視圖的面積為m,側視圖的面積為n,當θ變化時,mn的最大值是( )
A.2
B.4
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,頂部每平方米造價20元。
(1)設鐵柵長為米,一堵磚墻長為
米,求函數
的解析式;
(2)為使倉庫總面積達到最大,正面鐵柵應設計為多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={x|9x﹣43x+1+27=0},N={x|log2(x+1)+log2x=log26},則M、N的關系是( )
A.MN
B.NM
C.M=N
D.不確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是遞增數列,且對
,都有
,則實數
的取值范圍是
A. B.
C.
D.
【答案】D
【解析】
由{an}是遞增數列,得到an+1>an,再由“an=n2+λn恒成立”轉化為“λ>﹣2n﹣1對于n∈N*恒成立”求解.
∵{an}是遞增數列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>﹣2n﹣1對于n∈N*恒成立.
而﹣2n﹣1在n=1時取得最大值﹣3,
∴λ>﹣3,
故選:D.
【點睛】
本題主要考查由數列的單調性來構造不等式,解決恒成立問題.研究數列單調性的方法有:比較相鄰兩項間的關系,將an+1和an做差與0比較,即可得到數列的單調性;研究數列通項即數列表達式的單調性.
【題型】單選題
【結束】
13
【題目】已知數列{an}滿足a1=1,且an=an-1+2n1 (n≥2 ),則a20=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com